Robust plug-in bandwidth estimators in nonparametric regression

被引:30
|
作者
Boente, G
Fraiman, R
Meloche, J
机构
[1] UNIV BRITISH COLUMBIA, DEPT STAT, VANCOUVER, BC VBT 1Z2, CANADA
[2] UNIV BUENOS AIRES, RA-1053 BUENOS AIRES, DF, ARGENTINA
关键词
local M-estimates; robust bandwidth selectors; kernel weights; asymptotic equivalence;
D O I
10.1016/S0378-3758(96)00039-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a robust bandwidth selection method for local M-estimates used in nonparametric regression. We study the asymptotic behavior of the resulting estimates. We use the results of a Monte Carlo study to compare the performance of various competitors for moderate samples sizes. It appears that the robust plug-in bandwidth selector we propose compares favorably to its competitors, despite the need to select a pilot bandwidth. The Monte Carlo study shows that the robust plug-in bandwidth selector is very stable and relatively insensitive to the choice of the pilot.
引用
收藏
页码:109 / 142
页数:34
相关论文
共 50 条