Exact boundary controllability of the nonlinear Schrodinger equation

被引:48
|
作者
Rosier, Lionel [2 ]
Zhang, Bing-Yu [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] UMR 7502 UHP CNRS INRIA, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
Schrodinger equation; Smoothing properties; Exact boundary controllability; DE-VRIES EQUATION; STABILIZATION;
D O I
10.1016/j.jde.2008.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper Studies the exact boundary controllability of the semilinear Schrodinger equation posed on a bounded domain Omega subset of R-n with either the Dirichlet boundary conditions or the Neumann boundary conditions. It is shown that if s > n/2, or 0 <= s < n/2 with 1 <= n < 2 + 2s. or s = 0, 1 with n = 2, then the systems are locally exactly controllable in the classical Sobolev space H-s(Omega) around any smooth Solution of the cubic Schrodinger equation. Published by Elsevier Inc.
引用
收藏
页码:4129 / 4153
页数:25
相关论文
共 50 条
  • [41] Symmetries for exact solutions to the nonlinear Schrodinger equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)
  • [42] Hierarchical exact controllability of a parabolic equation with boundary controls
    Djomegne, Landry
    Kenne, Cyrille
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
  • [43] EXACT BOUNDARY CONTROLLABILITY FOR THE BOUSSINESQ EQUATION WITH VARIABLE COEFFICIENTS
    Ben Amara, Jamel
    Bouzidi, Hedi
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (03): : 403 - 415
  • [44] On the Exact Controllability of the Wave Equation with Interior and Boundary Controls
    A. T. Bui
    Journal of Optimization Theory and Applications, 2005, 125 : 19 - 35
  • [45] On the exact controllability of the wave equation with interior and boundary controls
    Bui, AT
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (01) : 19 - 35
  • [46] Exact boundary controllability of a nonlinear shallow spherical shell
    Bradley, ME
    Lasiecka, I
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (06): : 927 - 955
  • [47] POSITIVE AND NEGATIVE EXACT CONTROLLABILITY RESULTS FOR THE LINEAR BIHARMONIC SCHRODINGER EQUATION
    Ammari, Kais
    Bouzidi, Hedi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1158 - 1167
  • [48] EXACT CONTROLLABILITY OF THE SCHRODINGER-EQUATIONS - APPLICATION TO THE VIBRATING PLATES EQUATION
    FABRE, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (01): : 61 - 66
  • [49] Local exact boundary controllability for nonlinear wave equations
    Zhou, Yi
    Lei, Zhen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) : 1022 - 1051
  • [50] Bifurcations and Exact Solutions of the Nonlinear Schrodinger Equation with Nonlinear Dispersion
    Zhang, Qiuyan
    Zhou, Yuqian
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (03):