Exact boundary controllability of the nonlinear Schrodinger equation

被引:48
|
作者
Rosier, Lionel [2 ]
Zhang, Bing-Yu [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] UMR 7502 UHP CNRS INRIA, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
Schrodinger equation; Smoothing properties; Exact boundary controllability; DE-VRIES EQUATION; STABILIZATION;
D O I
10.1016/j.jde.2008.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper Studies the exact boundary controllability of the semilinear Schrodinger equation posed on a bounded domain Omega subset of R-n with either the Dirichlet boundary conditions or the Neumann boundary conditions. It is shown that if s > n/2, or 0 <= s < n/2 with 1 <= n < 2 + 2s. or s = 0, 1 with n = 2, then the systems are locally exactly controllable in the classical Sobolev space H-s(Omega) around any smooth Solution of the cubic Schrodinger equation. Published by Elsevier Inc.
引用
收藏
页码:4129 / 4153
页数:25
相关论文
共 50 条
  • [31] GLOBAL CONTROLLABILITY AND STABILIZATION FOR THE NONLINEAR SCHRODINGER EQUATION ON AN INTERVAL
    Laurent, Camille
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (02) : 356 - 379
  • [32] Controllability of the nonlinear Schrodinger equation in the vicinity of the ground state
    Lange, H.
    Teismann, H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (13) : 1483 - 1505
  • [33] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [34] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [35] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105
  • [36] Exact solutions of a nonpolynomially nonlinear Schrodinger equation
    Parwani, R.
    Tan, H. S.
    PHYSICS LETTERS A, 2007, 363 (03) : 197 - 201
  • [37] Exact controllability for a wave equation with fixed boundary control
    Lizhi Cui
    Libo Song
    Boundary Value Problems, 2014
  • [38] EXACT INTEGRATION OF NONLINEAR SCHRODINGER-EQUATION
    ITS, AR
    RYBIN, AV
    SALL, MA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 74 (01) : 20 - 32
  • [39] Exact controllability for a wave equation with fixed boundary control
    Cui, Lizhi
    Song, Libo
    BOUNDARY VALUE PROBLEMS, 2014,
  • [40] Exact solutions to the focusing nonlinear Schrodinger equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    INVERSE PROBLEMS, 2007, 23 (05) : 2171 - 2195