Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

被引:949
|
作者
Fang, Hui [1 ,4 ]
Battaglia, Corsin [1 ,4 ]
Carraro, Carlo [2 ]
Nemsak, Slavomir [4 ,7 ]
Ozdol, Burak [3 ,5 ]
Kang, Jeong Seuk [1 ,4 ]
Bechtel, Hans A. [6 ]
Desai, Sujay B. [1 ,4 ]
Kronast, Florian [8 ]
Unal, Ahmet A. [8 ]
Conti, Giuseppina [4 ,7 ]
Conlon, Catherine [4 ,7 ]
Palsson, Gunnar K. [4 ,7 ]
Martin, Michael C. [6 ]
Minor, Andrew M. [3 ,5 ]
Fadley, Charles S. [4 ,7 ]
Yablonovitch, Eli [1 ,4 ]
Maboudian, Roya [2 ]
Javey, Ali [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[7] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[8] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany
关键词
MoS2-WSe2; heterostructure; Moire pattern; charge transfer; exciton relaxation; rectifying; DIRAC FERMIONS; GRAPHENE; RECOMBINATION; TRANSITION; GENERATION;
D O I
10.1073/pnas.1405435111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such heterobilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of similar to 100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
引用
收藏
页码:6198 / 6202
页数:5
相关论文
共 50 条
  • [31] Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties
    Le, Nam B.
    Tran Doan Huang
    Woods, Lilia M.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (09) : 6286 - 6292
  • [32] Cavity-control of interlayer excitons in van der Waals heterostructures
    Forg, Michael
    Colombier, Leo
    Patel, Robin K.
    Lindlau, Jessica
    Mohite, Aditya D.
    Yamaguchi, Hisato
    Glazov, Mikhail M.
    Hunger, David
    Hogele, Alexander
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [33] Trapping interlayer excitons in van der Waals heterostructures by potential arrays
    Morrow, Darien J.
    Ma, Xuedan
    PHYSICAL REVIEW B, 2021, 104 (19)
  • [34] Spontaneous interlayer compression in commensurately stacked van der Waals heterostructures
    Pike, Nicholas A.
    Dewandre, Antoine
    Chaltin, Francois
    Gonzalez, Laura Garcia
    Pillitteri, Salvatore
    Ratz, Thomas
    Verstraete, Matthieu J.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [35] Quantum Phase Transitions of Interlayer Excitons in van der Waals Heterostructures
    Deng, Jia-Pei
    Wang, Zi-Wu
    Cui, Yu
    Liu, Yi-Yan
    Ma, Xin-Jun
    Li, Shao-Juan
    Li, Zhi-Qing
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (02):
  • [36] Cavity-control of interlayer excitons in van der Waals heterostructures
    Michael Förg
    Léo Colombier
    Robin K. Patel
    Jessica Lindlau
    Aditya D. Mohite
    Hisato Yamaguchi
    Mikhail M. Glazov
    David Hunger
    Alexander Högele
    Nature Communications, 10
  • [37] Anisotropic interlayer exciton in black phosphorus van der Waals heterostructures
    Li, Jintong
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (09)
  • [38] Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures
    Schwartz, Jeffrey J.
    Chuang, Hsun-Jen
    Rosenberger, Matthew R.
    Sivaram, Saujan V.
    McCreary, Kathleen M.
    Jonker, Berend T.
    Centrone, Andrea
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) : 25578 - 25585
  • [39] Extended spatial coherence of interlayer excitons in van der Waals heterostructures
    Figueiredo, J.
    Troue, M.
    Wurstbauer, U.
    Holleitner, A. W.
    2D PHOTONIC MATERIALS AND DEVICES VII, 2024, 12888
  • [40] Anisotropic interlayer exciton in black phosphorus van der Waals heterostructures
    Jintong Li
    Optical and Quantum Electronics, 2020, 52