Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

被引:949
|
作者
Fang, Hui [1 ,4 ]
Battaglia, Corsin [1 ,4 ]
Carraro, Carlo [2 ]
Nemsak, Slavomir [4 ,7 ]
Ozdol, Burak [3 ,5 ]
Kang, Jeong Seuk [1 ,4 ]
Bechtel, Hans A. [6 ]
Desai, Sujay B. [1 ,4 ]
Kronast, Florian [8 ]
Unal, Ahmet A. [8 ]
Conti, Giuseppina [4 ,7 ]
Conlon, Catherine [4 ,7 ]
Palsson, Gunnar K. [4 ,7 ]
Martin, Michael C. [6 ]
Minor, Andrew M. [3 ,5 ]
Fadley, Charles S. [4 ,7 ]
Yablonovitch, Eli [1 ,4 ]
Maboudian, Roya [2 ]
Javey, Ali [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[7] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[8] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany
关键词
MoS2-WSe2; heterostructure; Moire pattern; charge transfer; exciton relaxation; rectifying; DIRAC FERMIONS; GRAPHENE; RECOMBINATION; TRANSITION; GENERATION;
D O I
10.1073/pnas.1405435111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such heterobilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of similar to 100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
引用
收藏
页码:6198 / 6202
页数:5
相关论文
共 50 条
  • [21] Vertical Heterostructures of Layered Metal Chalcogenides by van der Waals Epitaxy
    Zhang, Xingwang
    Meng, Fei
    Christianson, Jeffrey R.
    Arroyo-Torres, Christian
    Lukowski, Mark A.
    Liang, Dong
    Schmidt, J. R.
    Jin, Song
    NANO LETTERS, 2014, 14 (06) : 3047 - 3054
  • [22] Optical identification of interlayer coupling of graphene/MoS2 van der Waals heterostructures
    Yang, Mingming
    Wang, Longlong
    Hu, Guofeng
    Chen, Xue
    Gong, Peng Lai
    Cong, Xin
    Liu, Yi
    Yang, Yuanbo
    Li, Xiaoli
    Zhao, Xiaohui
    Liu, Xuelu
    NANO RESEARCH, 2021, 14 (07) : 2241 - 2246
  • [23] Optical identification of interlayer coupling of graphene/MoS2 van der Waals heterostructures
    Mingming Yang
    Longlong Wang
    Guofeng Hu
    Xue Chen
    Peng Lai Gong
    Xin Cong
    Yi Liu
    Yuanbo Yang
    Xiaoli Li
    Xiaohui Zhao
    Xuelu Liu
    Nano Research, 2021, 14 : 2241 - 2246
  • [24] Active Tuning and Anisotropic Strong Coupling of Terahertz Polaritons in Van der Waals Heterostructures
    Li, Shaopeng
    Xu, Junhao
    Xie, Yajie
    MICROMACHINES, 2022, 13 (11)
  • [25] Layer photovoltaic effect in van der Waals heterostructures
    Matsyshyn, Oles
    Xiong, Ying
    Arora, Arpit
    Song, Justin C. W.
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [26] pH sensors based on amino-terminated carbon nanomembrane and single-layer graphene van der Waals heterostructures
    Kaiser, D.
    Tang, Z.
    Kullmer, M.
    Neumann, C.
    Winter, A.
    Kahle, R.
    Georgi, L.
    Weimann, T.
    Siegmann, M.
    Grafe, S.
    Centeno, A.
    Zurutuza, A.
    Turchanin, A.
    APPLIED PHYSICS REVIEWS, 2021, 8 (03)
  • [27] VAN-DER-WAALS ENERGIES OF CYLINDRICAL AND SPHERICAL SINGLE-LAYER SYSTEMS
    WITTE, NS
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (10): : 8168 - 8182
  • [28] Crystal phases of charged interlayer excitons in van der Waals heterostructures
    Igor V. Bondarev
    Oleg L. Berman
    Roman Ya. Kezerashvili
    Yurii E. Lozovik
    Communications Physics, 4
  • [29] Crystal phases of charged interlayer excitons in van der Waals heterostructures
    Bondarev, Igor, V
    Berman, Oleg L.
    Kezerashvili, Roman Ya
    Lozovik, Yurii E.
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [30] Self-Trapped Interlayer Excitons in van der Waals Heterostructures
    Deng, Jia-Pei
    Li, Hong-Juan
    Ma, Xu-Fei
    Liu, Xiao-Yi
    Cui, Yu
    Ma, Xin-Jun
    Li, Zhi-Qing
    Wang, Zi-Wu
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (16): : 3732 - 3739