A Chip-Scale, Low Cost PVD System

被引:2
|
作者
Barrett, Lawrence K. [1 ]
Lally, Richard W. [1 ]
Fuhr, Nicholas E. [1 ]
Stange, Alexander [1 ]
Bishop, David J. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Boston Univ, Div Mat Sci, Boston, MA 02215 USA
[2] Boston Univ, Elect & Comp Engn Dept, Boston, MA 02215 USA
[3] Boston Univ, Phys Dept, Boston, MA 02215 USA
[4] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[5] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Physical vapor deposition (PVD); evaporation; fab-on-a-chip; MEMS; mass sensor; quartz oscillator; film thickness monitor; phased locked loop; VAPOR-DEPOSITION; SOLID-STATE; MASS SENSOR; SILICON; FILMS; FAB;
D O I
10.1109/JMEMS.2020.3026533
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Standard physical vapor deposition systems are large, expensive, and slow. As part of an on-going effort to build a fab-on-a-chip, we have developed a chip-scale, low cost, fast physical vapor deposition system designed to be used with atomic calligraphy or dynamic stencil lithography to direct write nanostructures. The system comprises two MEMS devices: a chip-scale thermal evaporator and a mass sensor that serves as a film thickness monitor. Here, we demonstrate the functionality of both devices by depositing Pb thin-films. The thermal evaporator was made by fabless manufacturing using the SOIMUMPs processs (MEMSCAP, inc). It turns on in 1:46 s and reaches deposition rates as high as 7.2 angstrom s(-1) with similar to 1 mm separation from the target. The mass sensor is a re-purposed quartz oscillator (JTX210) that is commercially available for less than one dollar. Its resolution was measured to be 2.65 fg or 7.79E-5 monolayers of Pb. [2020-0237]
引用
收藏
页码:1547 / 1555
页数:9
相关论文
共 50 条
  • [31] Chip-scale Blue Phased Array
    Shin, Min Chul
    Mohanty, Aseema
    Watson, Kyle
    Bhatt, Gaurang R.
    Phare, Christopher T.
    Miller, Steven A.
    Zadka, Moshe
    Lee, Brian S.
    Ji, Xingchen
    Shim, Euijae
    Datta, Ipshita
    Lipson, Michal
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [32] A chip-scale atomic beam clock
    Gabriela D. Martinez
    Chao Li
    Alexander Staron
    John Kitching
    Chandra Raman
    William R. McGehee
    Nature Communications, 14
  • [33] Atomic sensors - Chip-scale magnetometers
    Romalis, Michael V.
    NATURE PHOTONICS, 2007, 1 (11) : 613 - 614
  • [34] Plasmonics: the next chip-scale technology
    Zia, Rashid
    Schuller, Jon A.
    Chandran, Anu
    Brongersma, Mark L.
    MATERIALS TODAY, 2006, 9 (7-8) : 20 - 27
  • [35] A bright future for chip-scale packaging
    Chin, S
    ELECTRONIC PRODUCTS MAGAZINE, 1998, 40 (12): : 23 - 24
  • [36] Chip-scale atomic devices at NIST
    Knappe, Svenja
    Schwindt, Peter
    Gerginov, Vladislav
    Shah, Vishal
    Brannon, Alan
    Lindseth, Brad
    Liew, Li-Anne
    Robinson, Hugh
    Moreland, John
    Popovic, Zoya
    Hollberg, Leo
    Kitching, John
    14TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2007, 6604
  • [37] CHIP-SCALE PACKAGING COMES TO THE FOREFRONT
    CHIN, S
    ELECTRONIC PRODUCTS MAGAZINE, 1995, 38 (06): : 17 - 18
  • [38] New stacked chip-scale package
    不详
    SOLID STATE TECHNOLOGY, 2001, 44 (03) : 42 - 42
  • [39] Magnetoencephalography with a chip-scale atomic magnetometer
    Sander, T. H.
    Preusser, J.
    Mhaskar, R.
    Kitching, J.
    Trahms, L.
    Knappe, S.
    BIOMEDICAL OPTICS EXPRESS, 2012, 3 (05): : 981 - 990
  • [40] Chip-scale power booster for light
    Kim, Jungwon
    SCIENCE, 2022, 376 (6599) : 1269 - 1269