A Chip-Scale, Low Cost PVD System

被引:2
|
作者
Barrett, Lawrence K. [1 ]
Lally, Richard W. [1 ]
Fuhr, Nicholas E. [1 ]
Stange, Alexander [1 ]
Bishop, David J. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Boston Univ, Div Mat Sci, Boston, MA 02215 USA
[2] Boston Univ, Elect & Comp Engn Dept, Boston, MA 02215 USA
[3] Boston Univ, Phys Dept, Boston, MA 02215 USA
[4] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[5] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Physical vapor deposition (PVD); evaporation; fab-on-a-chip; MEMS; mass sensor; quartz oscillator; film thickness monitor; phased locked loop; VAPOR-DEPOSITION; SOLID-STATE; MASS SENSOR; SILICON; FILMS; FAB;
D O I
10.1109/JMEMS.2020.3026533
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Standard physical vapor deposition systems are large, expensive, and slow. As part of an on-going effort to build a fab-on-a-chip, we have developed a chip-scale, low cost, fast physical vapor deposition system designed to be used with atomic calligraphy or dynamic stencil lithography to direct write nanostructures. The system comprises two MEMS devices: a chip-scale thermal evaporator and a mass sensor that serves as a film thickness monitor. Here, we demonstrate the functionality of both devices by depositing Pb thin-films. The thermal evaporator was made by fabless manufacturing using the SOIMUMPs processs (MEMSCAP, inc). It turns on in 1:46 s and reaches deposition rates as high as 7.2 angstrom s(-1) with similar to 1 mm separation from the target. The mass sensor is a re-purposed quartz oscillator (JTX210) that is commercially available for less than one dollar. Its resolution was measured to be 2.65 fg or 7.79E-5 monolayers of Pb. [2020-0237]
引用
收藏
页码:1547 / 1555
页数:9
相关论文
共 50 条
  • [21] Chip-Scale Sensor System Integration for Portable Health Monitoring
    Jokerst, Nan M.
    Brooke, Martin A.
    Cho, Sang-Yeon
    Shang, Allan B.
    ANESTHESIA AND ANALGESIA, 2007, 105 : S42 - S47
  • [22] Low-loss chip-scale programmable silicon photonic processor
    Yiwei Xie
    Shihan Hong
    Hao Yan
    Changping Zhang
    Long Zhang
    Leimeng Zhuang
    Daoxin Dai
    Opto-Electronic Advances, 2023, 6 (03) : 31 - 48
  • [23] Low-threshold Chip-scale Aluminum Nitride Raman Laser
    Liu, Xianwen
    Sun, Changzheng
    Xiong, Bing
    Wang, Jian
    Wang, Lai
    Han, Yanjun
    Hao, Zhibiao
    Li, Hongtao
    Luo, Yi
    Yan, Jianchang
    Wei, Tongbo
    Zhang, Yun
    Wang, Junxi
    2016 INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2016,
  • [24] Low-loss chip-scale programmable silicon photonic processor
    Xie, Yiwei
    Hong, Shihan
    Yan, Hao
    Zhang, Changping
    Zhang, Long
    Zhuang, Leimeng
    Dai, Daoxin
    OPTO-ELECTRONIC ADVANCES, 2023, 6 (03)
  • [25] Low-power Circuit Structures for Chip-scale Stimulating Implants
    Lehmann, Torsten
    Jung, Louis
    Moghe, Yashodhan
    Chun, Hosung
    Yang, Yuanyuan
    Alex, Asish Zac
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 312 - 315
  • [26] Frequency Synthesis with Chip-Scale Microresonators
    Diddams, Scott A.
    Papp, Scott B.
    2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2016,
  • [27] A manufacturable chip-scale atomic clock
    Youngner, D. W.
    Lust, L. M.
    Carlson, D. R.
    Lu, S. T.
    Forner, L. J.
    Chanhvongsak, H. M.
    Stark, T. D.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [28] Progress in Chip-Scale Photonic Sensing
    Jokerst, Nan Marie
    Luan, Lin
    Palit, Sabarni
    Royal, Matthew
    Dhar, Sulochana
    Brooke, Martin A.
    Tyler, Talmage, II
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2009, 3 (04) : 202 - 211
  • [29] Chip-scale optical airflow sensor
    Yumeng Luo
    Xiaoshuai An
    Liang Chen
    Kwai Hei Li
    Microsystems & Nanoengineering, 8
  • [30] Application realities of chip-scale packaging
    Circuits Assembly, 1997, 8 (07): : 38 - 40