Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction

被引:58
|
作者
Bai, Xiaogong [1 ]
Shi, Yantao [1 ]
Guo, Jiahao [1 ]
Gao, Liguo [2 ]
Wang, Kai [1 ]
Du, Yi [1 ]
Ma, Tingli [2 ,3 ]
机构
[1] Dalian Univ Technol, Sch Chem, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Petr & Chem Engn, Panjin 124221, Peoples R China
[3] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka 8080196, Japan
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
N-doping graphene; Oxygen reduction reaction; N-distribution; Structural defects; HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE CATALYST; ONE-POT SYNTHESIS; NITROGEN; METHANOL; ALKALINE;
D O I
10.1016/j.jpowsour.2015.10.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
N-doped graphene (NG) is a promising candidate for oxygen reduction reaction (ORR) in the cathode of fuel cells. However, the catalytic activity of NG is lower than that of commercial Pt/C in alkaline and acidic media. In this study, NG samples were obtained using urea as N source. The structural defects and N distribution in the samples were adjusted by regulating the pyrolysis temperature. The new NG type exhibited remarkable catalytic activities for ORR in both alkaline and acidic media. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [31] A comparison of single and double Co sites incorporated in N-doped graphene for the oxygen reduction reaction
    Svane, Katrine L.
    Hansen, Heine A.
    Vegge, Tejs
    JOURNAL OF CATALYSIS, 2021, 393 : 230 - 237
  • [32] Bimetallic CoZn Nanocrystals Embedded in N-Doped Graphene Layers as Electrocatalysts for Oxygen Reduction Reaction
    Qing Wang
    Shaojie Shi
    Fan Wu
    Zhiguo Zhang
    Guoneng Li
    Youqu Zheng
    Yange Suo
    Catalysis Letters, 2022, 152 : 1950 - 1960
  • [33] Hollow CoO Nanoparticles Embedded in N-doped Mesoporous Graphene for Efficient Oxygen Reduction Reaction
    Li, Yanping
    Zhang, Hong
    Wang, Mimi
    Zhu, Sheng
    Han, Gaoyi
    CHEMISTRYSELECT, 2022, 7 (33):
  • [34] Electroless Bimetal Decoration on N-Doped Carbon Nanotubes and Graphene for Oxygen Reduction Reaction Catalysts
    Lee, Won Jun
    Choi, Dong Sung
    Lee, Sun Hwa
    Lim, Joonwon
    Kim, Ji Eun
    Li, Dong Jun
    Lee, Gil Yong
    Kim, Sang Ouk
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (09) : 965 - 970
  • [35] Enhanced oxygen reduction of porous N-doped carbon nanosheets with graphitic N and defects obtained from coal-based graphene quantum dots
    Lei, Jing
    Wang, Kun
    Deng, Bangwei
    Li, Yizhao
    Zhang, Su
    Cao, Yali
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [36] Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction
    Shi, Qiurong
    Zhu, Chengzhou
    Engelhard, Mark H.
    Du, Dan
    Lin, Yuehe
    RSC ADVANCES, 2017, 7 (11): : 6303 - 6308
  • [37] N-doped graphene encapsulated FeNi core-shell with S defects for the oxygen evolution reaction
    Feng, Rumeng
    Chen, Lu
    Huang, Liping
    Wu, Haihong
    Ge, Yuanyu
    Xu, Jiani
    Zeng, Min
    Li, Wenyao
    NEW JOURNAL OF CHEMISTRY, 2024,
  • [38] Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution
    Guo, Jiahao
    Zhang, Songlin
    Zheng, Mingxun
    Tang, Jing
    Liu, Lei
    Chen, Junming
    Wang, Xuchun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 32402 - 32412
  • [39] B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction
    Sun, Xiaohan
    Tie, Xiaoguo
    Zhang, Yurui
    Zhao, Zhengwei
    Li, Qiaoxia
    Min, Yulin
    Xu, Qunjie
    JOURNAL OF NANOPARTICLE RESEARCH, 2022, 24 (05)
  • [40] B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction
    Xiaohan Sun
    Xiaoguo Tie
    Yurui Zhang
    Zhengwei Zhao
    Qiaoxia Li
    Yulin Min
    Qunjie Xu
    Journal of Nanoparticle Research, 2022, 24