Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar

被引:29
|
作者
Casasent, D
Shenoy, R
机构
[1] Carnegie Mellon University, Dept. of Elec. and Comp. Engineering, Pittsburgh
[2] Indian Institute of Technology, Madras
[3] Carnegie Mellon University, Pittsburgh, PA
[4] Indian Space Research Organization, Trivandrum
关键词
correlation pattern recognition; automatic target recognition; classification; clutter rejection; distortion invariance; feature space trajectory; pose estimation; synthetic aperture radar;
D O I
10.1117/1.601520
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class al-td for determining training, and test set compatibility are presented. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:2719 / 2728
页数:10
相关论文
共 50 条
  • [31] Driver's head pose estimation using a hierarchical classification on an effective feature space
    Ghaffari, Ali
    Rezvan, Mahdieh
    Khodayari, Alireza
    Sadati, Seyed Hossein
    Vahidi-Shams, Afra
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2012, 226 (D9) : 1233 - 1242
  • [32] Ship classification in synthetic aperture radar based on SVM
    Wang, J
    Gong, XJ
    Ci, LL
    Yao, KZ
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 5747 - 5750
  • [33] Convolutional Neural Networks for Synthetic Aperture Radar Classification
    Profeta, Andrew
    Rodriguez, Andres
    Clouse, H. Scott
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXIII, 2016, 9843
  • [34] Polarimetric fusion for synthetic aperture radar target classification
    Hauter, A
    Chang, KC
    Karp, S
    PATTERN RECOGNITION, 1997, 30 (05) : 769 - 775
  • [35] Assessment of Soil Classification from Synthetic Aperture Radar
    Priest, Tess
    Paprocki, Julie
    GEO-CONGRESS 2024: GEOTECHNICAL SITE AND SOIL CHARACTERIZATION, 2024, 348 : 594 - 602
  • [36] A CIRCULAR SYNTHETIC APERTURE RADAR FOR ON-THE-GROUND OBJECT DETECTION
    Mohammadpoor, M.
    Abdullah, R. S. A. Raja
    Ismail, A.
    Abas, A. F.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 122 : 269 - 292
  • [37] Integrated Object Detection and Communication for Synthetic Aperture Radar Images
    Xu, Zhiping
    Xu, Deyin
    Lin, Lixiong
    Song, Linqi
    Song, Dan
    Sun, Yanglong
    Chen, Qiwang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 294 - 307
  • [38] Terahertz Imaging Radar with Aperture Synthetic Techniques for Object Detection
    Zhang, Biao
    Pi, Yiming
    Yang, Xiaobo
    2013 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (IEEE ICC), 2013, : 921 - 925
  • [39] Strategy of Doppler centroid estimation in synthetic aperture radar
    Long, T.
    Liu, L.
    Ding, Z.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (03): : 279 - 287
  • [40] Synthetic aperture radar imaging with motion estimation and autofocus
    Borcea, L.
    Callaghan, T.
    Papanicolaou, G.
    INVERSE PROBLEMS, 2012, 28 (04)