Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar

被引:29
|
作者
Casasent, D
Shenoy, R
机构
[1] Carnegie Mellon University, Dept. of Elec. and Comp. Engineering, Pittsburgh
[2] Indian Institute of Technology, Madras
[3] Carnegie Mellon University, Pittsburgh, PA
[4] Indian Space Research Organization, Trivandrum
关键词
correlation pattern recognition; automatic target recognition; classification; clutter rejection; distortion invariance; feature space trajectory; pose estimation; synthetic aperture radar;
D O I
10.1117/1.601520
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class al-td for determining training, and test set compatibility are presented. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:2719 / 2728
页数:10
相关论文
共 50 条
  • [21] An Object Recognition Approach for Synthetic Aperture Radar Images
    Chen Ning
    Wenbo Liu
    Gong Zhang
    Xin Wang
    Mobile Networks and Applications, 2021, 26 : 1259 - 1266
  • [22] The Object Detection Efficiency in Synthetic Aperture Radar Systems
    Chernoyarov, O., V
    Dobrucky, B.
    Ivanov, V. A.
    Faulgaber, A. N.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (02): : 337 - 343
  • [23] Advanced synthetic aperture radar imaging and feature analysis
    Chen, VC
    Lipps, R
    Bottoms, M
    2003 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RADAR, 2003, : 22 - 29
  • [24] Feature enhanced synthetic aperture radar image formation
    Sun Bin
    Jin Haibo
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL II, 2007, : 803 - 809
  • [25] Optimal Radar Cross Section Estimation in Synthetic Aperture Radar
    Volosyuk, V. K.
    Zhyla, S. S.
    2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 191 - 195
  • [26] ESTIMATION OF POSE ANGLE FOR TRIHEDRAL IN ULTRAWIDEBAND VIRTUAL APERTURE RADAR
    Chen, Bo
    Jin, Tian
    Zhou, Zhimin
    Lu, Biying
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 138 : 307 - 325
  • [27] Snow physical parameters estimation using space-based Synthetic Aperture Radar
    Thakur, Praveen K.
    Aggarwal, S. P.
    Garg, P. K.
    Garg, R. D.
    Mani, Sneh
    Pandit, Ankur
    Kumar, Sanjeev
    GEOCARTO INTERNATIONAL, 2012, 27 (03) : 263 - 288
  • [28] Oil spill detection using synthetic aperture radar images and feature selection in shape space
    Guo, Yue
    Zhang, Heng Zhen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 30 : 146 - 157
  • [29] Object Pose Estimation and Feature Extraction Based on PVNet
    Kao, Yi-Hsiang
    Chen, Ching-Kun
    Chen, Chih-Cheng
    Lan, Chen-Yen
    IEEE ACCESS, 2022, 10 : 122387 - 122398
  • [30] Sub-aperture Doppler parameters estimation for synthetic aperture radar
    Veneziani, N
    Lovergine, FP
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY VI, 1999, 3721 : 140 - 151