Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning

被引:46
|
作者
Kranz, Julian J. [1 ]
Kubillus, Maximilian [1 ]
Ramakrishnan, Raghunathan [3 ,4 ,5 ]
von Lilienfeld, O. Anatole [3 ,4 ]
Elstner, Marcus [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Biol Interfaces IBG 2, D-76131 Karlsruhe, Germany
[3] Univ Basel, Inst Phys Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[4] Univ Basel, Dept Chem, Natl Ctr Computat Design & Discovery Novel Mat MA, Klingelbergstr 80, CH-4056 Basel, Switzerland
[5] Tata Inst Fundamental Res, Ctr Interdisciplinary Sci, 21 Brundavan Colony, Hyderabad 500075, Andhra Pradesh, India
基金
瑞士国家科学基金会;
关键词
DFTB; PARAMETERIZATION; COMPLEX;
D O I
10.1021/acs.jctc.7b00933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine the approximate density-functional tight-binding (DFTB) method with unsupervised machine learning. This allows us to improve transferability and accuracy, make use of large quantum chemical data sets for the parametrization, and efficiently automatize the parametrization process of DFTB. For this purpose, generalized pair-potentials are introduced, where the chemical environment is included during the learning process, leading to more specific effective two-body potentials. We train on energies and forces of equilibrium and nonequilibrium structures of 2100 molecules, and test on similar to 130 000 organic molecules containing O, N, C, H, and F atoms. Atomization energies of the reference method can be reproduced within an error of similar to 2.6 kcal/mol, indicating drastic improvement over standard DFTB.
引用
收藏
页码:2341 / 2352
页数:12
相关论文
共 50 条
  • [41] Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds
    Moreira, Ney H.
    Dolgonos, Grygoriy
    Aradi, Balint
    da Rosa, Andreia L.
    Frauenheim, Thomas
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (03) : 605 - 614
  • [42] Efficient Automatized Density-Functional Tight-Binding Parametrizations: Application to Group IV Elements
    Huran, Ahmad W.
    Steigemann, Conrad
    Frauenheim, Thomas
    Aradi, Balint
    Marques, Miguel A. L.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (06) : 2947 - 2954
  • [43] Density-Functional Tight-Binding Molecular Dynamics Simulation of the Bending Mechanism of Molecular Crystals
    Ootani, Yusuke
    Kubo, Momoji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (25): : 10554 - 10565
  • [44] Evaluation of Density-Functional Tight-Binding Methods for Simulation of Protic Molecular Ion Pairs
    Walker, Tyler
    Vuong, Van-Quan
    Irle, Stephan
    Ma, Jihong
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2025, 46 (05)
  • [45] Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding
    Kowalczyk, Tim
    Le, Khoa
    Irle, Stephan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (01) : 313 - 323
  • [46] Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study
    Wang, Jingliang
    Madsen, Georg K. H.
    Drautz, Ralf
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2018, 26 (02)
  • [47] Density-functional tight-binding study of the collapse of carbon nanotubes under hydrostatic pressure
    Cerqueira, Tiago F. T.
    Botti, Silvana
    San-Miguel, Alfonso
    Marques, Miguel A. L.
    CARBON, 2014, 69 : 355 - 360
  • [48] TRANSFERABLE TIGHT-BINDING MODELS FROM DENSITY FUNCTIONAL THEORY
    FOULKES, WMC
    ATOMISTIC SIMULATION OF MATERIALS : BEYOND PAIR POTENTIALS, 1989, : 353 - 359
  • [49] Analytical excited state forces for the time-dependent density-functional tight-binding method
    Heringer, D.
    Niehaus, T. A.
    Wanko, M.
    Frauenheim, Th.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (16) : 2589 - 2601
  • [50] Self consistent-charge density-functional tight-binding method for simulations of biological molecules
    Universitaet-GH Paderborn, Paderborn, Germany
    Mater Res Soc Symp Proc, (541-546):