Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning

被引:46
|
作者
Kranz, Julian J. [1 ]
Kubillus, Maximilian [1 ]
Ramakrishnan, Raghunathan [3 ,4 ,5 ]
von Lilienfeld, O. Anatole [3 ,4 ]
Elstner, Marcus [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Biol Interfaces IBG 2, D-76131 Karlsruhe, Germany
[3] Univ Basel, Inst Phys Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[4] Univ Basel, Dept Chem, Natl Ctr Computat Design & Discovery Novel Mat MA, Klingelbergstr 80, CH-4056 Basel, Switzerland
[5] Tata Inst Fundamental Res, Ctr Interdisciplinary Sci, 21 Brundavan Colony, Hyderabad 500075, Andhra Pradesh, India
基金
瑞士国家科学基金会;
关键词
DFTB; PARAMETERIZATION; COMPLEX;
D O I
10.1021/acs.jctc.7b00933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine the approximate density-functional tight-binding (DFTB) method with unsupervised machine learning. This allows us to improve transferability and accuracy, make use of large quantum chemical data sets for the parametrization, and efficiently automatize the parametrization process of DFTB. For this purpose, generalized pair-potentials are introduced, where the chemical environment is included during the learning process, leading to more specific effective two-body potentials. We train on energies and forces of equilibrium and nonequilibrium structures of 2100 molecules, and test on similar to 130 000 organic molecules containing O, N, C, H, and F atoms. Atomization energies of the reference method can be reproduced within an error of similar to 2.6 kcal/mol, indicating drastic improvement over standard DFTB.
引用
收藏
页码:2341 / 2352
页数:12
相关论文
共 50 条
  • [31] Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
    Vuong, Van Quan
    Madridejos, Jenica Marie L.
    Aradi, Balint
    Sumpter, Bobby G.
    Metha, Gregory F.
    Irle, Stephan
    CHEMICAL SCIENCE, 2020, 11 (48) : 13113 - 13128
  • [32] Dissipative friction dynamics within the density-functional based tight-binding scheme
    Eric Michoulier
    Didier Lemoine
    Fernand Spiegelman
    Sven Nave
    Mathias Rapacioli
    The European Physical Journal Special Topics, 2023, 232 : 1975 - 1983
  • [33] Adjusting dispersion parameters for the density-functional tight-binding description of molecular crystals
    Dolgonos, Grygoriy A.
    Boese, A. Daniel
    CHEMICAL PHYSICS LETTERS, 2019, 718 : 7 - 11
  • [34] Which molecules can challenge density-functional tight-binding methods in evaluating the energies of conformers? investigation with machine-learning toolset
    Terets, Andrii
    Nikolaienko, Tymofii
    LOW TEMPERATURE PHYSICS, 2024, 50 (03) : 227 - 235
  • [35] Density-functional tight binding - an approximate density-functional theory method
    Seifert, Gotthard
    Joswig, Jan-Ole
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (03) : 456 - 465
  • [36] Multipole Expansion of Atomic Electron Density Fluctuation Interactions in the Density-Functional Tight-Binding Method
    Vuong, Van-Quan
    Aradi, Balint
    Niklasson, Anders M. N.
    Cui, Qiang
    Irle, Stephan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7592 - 7605
  • [37] Density-functional based tight-binding approach to III-V semiconductor clusters
    Elsner, J
    Haugk, M
    Jungnickel, G
    Frauenheim, T
    JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (10) : 1649 - 1656
  • [38] Scalable Ehrenfest Molecular Dynamics Exploiting the Locality of Density-Functional Tight-Binding Hamiltonian
    Uratani, Hiroki
    Nakai, Hiromi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (12) : 7384 - 7396
  • [39] Artificial neural network correction for density-functional tight-binding molecular dynamics simulations
    Junmian Zhu
    Van Quan Vuong
    Bobby G. Sumpter
    Stephan Irle
    MRS Communications, 2019, 9 : 867 - 873
  • [40] Artificial neural network correction for density-functional tight-binding molecular dynamics simulations
    Zhu, Junmian
    Van Quan Vuong
    Sumpter, Bobby G.
    Irle, Stephan
    MRS COMMUNICATIONS, 2019, 9 (03) : 867 - 873