Finite q-oscillator

被引:19
|
作者
Atakishiyev, NM [1 ]
Klimyk, AU
Wolf, KB
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62210, Morelos, Mexico
[3] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
来源
关键词
D O I
10.1088/0305-4470/37/21/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su(q)(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor' - points x(s) = (1)/(2)[2s](q), s is an element of {-j, -j + 1,..., j}, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrodinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q --> 1 we recover the finite oscillator Lie algebra, the N = 2j --> infinity limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.
引用
收藏
页码:5569 / 5587
页数:19
相关论文
共 50 条