Finite q-oscillator

被引:19
|
作者
Atakishiyev, NM [1 ]
Klimyk, AU
Wolf, KB
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62210, Morelos, Mexico
[3] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
来源
关键词
D O I
10.1088/0305-4470/37/21/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su(q)(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor' - points x(s) = (1)/(2)[2s](q), s is an element of {-j, -j + 1,..., j}, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrodinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q --> 1 we recover the finite oscillator Lie algebra, the N = 2j --> infinity limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.
引用
收藏
页码:5569 / 5587
页数:19
相关论文
共 50 条
  • [21] AN ANALOG OF THE UNITARY DISPLACEMENT OPERATOR FOR THE Q-OSCILLATOR
    MCDERMOTT, RJ
    SOLOMON, AI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06): : 2037 - 2043
  • [22] Representations of q-oscillator algebra at a root of 1
    侯伯宇
    侯伯元
    许连超
    周善有
    Science China Mathematics, 1995, (07) : 799 - 804
  • [23] Multidimensional isotropic and anisotropic q-oscillator models
    Ghosh, A
    Mitra, P
    Kundu, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (01): : 115 - 124
  • [24] A QUANTUM-MECHANICAL ANALOG FOR THE Q-OSCILLATOR
    FLORATOS, EG
    TOMARAS, TN
    PHYSICS LETTERS B, 1990, 251 (01) : 163 - 166
  • [25] Affinization of q-oscillator representations of Uq(gln)
    Kwon, Jae-Hoon
    Lee, Sin-Myung
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (03)
  • [26] q-oscillator representations of Hermitian braided matrices
    Arik, M
    Yildiz, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (09): : L255 - L262
  • [27] Multidimensional isotropic and anisotropic q-oscillator models
    Ghosh, A.
    Mitra, P.
    Kundu, A.
    Journal of Physics A: Mathematical and General,
  • [28] The q-oscillator:: a Lagrangian description for variable damping
    Santos, J
    Lima, JAS
    PHYSICS LETTERS A, 2000, 267 (04) : 213 - 218
  • [29] q-oscillator representations of Hermitian braided matrices
    Arik, M.
    Yildiz, A.
    Journal of Physics A: Mathematical and General, 30 (09):
  • [30] ASPECTS OF Q-OSCILLATOR QUANTUM-MECHANICS
    CHATURVEDI, S
    SRINIVASAN, V
    PHYSICAL REVIEW A, 1991, 44 (12): : 8020 - 8023