Perfect partitions of convex sets in the plane

被引:7
|
作者
Kaneko, A
Kano, M
机构
[1] Kogakuin Univ, Dept Comp Sci & Commun Engn, Shinjuku Ku, Tokyo 1638677, Japan
[2] Ibaraki Univ, Dept Comp & Informat Sci, Hitachi, Ibaraki 3168511, Japan
关键词
D O I
10.1007/s00454-002-2808-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a region X in the plane, wedenoteby area(X) the areaof X and by l(partial derivative(X)) the length of the boundary of X. Let S be a convex set in the plane, let n greater than or equal to 2 be an integer, and let alpha(1), alpha(2),...., alpha(n) be positive real numbers such that alpha(1) + alpha(2) +(...)+ alpha(n) = 1 and 0 < alpha(i) less than or equal to (1)/(2) for all 1 less than or equal to i less than or equal to n. then we shall show that S can be partitioned into n disjoint convex subsets T-1, T-2,..., T-n so that each T-i satisfies the following three conditions: (i) area(T-i) = alpha(i) x area(S); (ii) l(T-i boolean AND partial derivative(S)) = alpha(i) x (partial derivative(S)); and (iii) T-i boolean AND partial derivative(S) consists of exactly one continuous curve.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 50 条
  • [41] PERFECT PARTITIONS
    WANG, EF
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1986, 7 (03) : 267 - 272
  • [42] Perfect Partitions
    王萼芳
    数学进展, 1985, (03) : 287 - 288
  • [43] Balanced partitions of 3-colored geometric sets in the plane
    Bereg, Sergey
    Hurtado, Ferran
    Kano, Mikio
    Korman, Matias
    Lara, Dolores
    Seara, Carlos
    Silveira, Rodrigo I.
    Urrutia, Jorge
    Verbeek, Kevin
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 21 - 32
  • [45] Properties of connected ortho-convex sets in the plane
    A. M. Dulliev
    Mathematical Notes, 2017, 101 : 443 - 459
  • [46] Allowable Interval Sequences and Separating Convex Sets in the Plane
    Mordechai Novick
    Discrete & Computational Geometry, 2012, 47 : 378 - 392
  • [47] Allowable Interval Sequences and Separating Convex Sets in the Plane
    Novick, Mordechai
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (02) : 378 - 392
  • [48] A colorful theorem on transversal lines to plane convex sets
    Arocha, Jorge L.
    Bracho, Javier
    Montejano, Luis
    COMBINATORICA, 2008, 28 (04) : 379 - 384
  • [49] A Sharp Quantitative Estimate for the Perimeters of Convex Sets in the Plane
    Carozza, Menita
    Giannetti, Flavia
    Leonetti, Francesco
    di Napoli, Antonia Passarelli
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (03) : 853 - 858
  • [50] Convex sets in the plane with three of every four meeting
    Kleitman, DJ
    Gyárfás, A
    Tóth, G
    COMBINATORICA, 2001, 21 (02) : 221 - 232