Perfect partitions of convex sets in the plane

被引:7
|
作者
Kaneko, A
Kano, M
机构
[1] Kogakuin Univ, Dept Comp Sci & Commun Engn, Shinjuku Ku, Tokyo 1638677, Japan
[2] Ibaraki Univ, Dept Comp & Informat Sci, Hitachi, Ibaraki 3168511, Japan
关键词
D O I
10.1007/s00454-002-2808-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a region X in the plane, wedenoteby area(X) the areaof X and by l(partial derivative(X)) the length of the boundary of X. Let S be a convex set in the plane, let n greater than or equal to 2 be an integer, and let alpha(1), alpha(2),...., alpha(n) be positive real numbers such that alpha(1) + alpha(2) +(...)+ alpha(n) = 1 and 0 < alpha(i) less than or equal to (1)/(2) for all 1 less than or equal to i less than or equal to n. then we shall show that S can be partitioned into n disjoint convex subsets T-1, T-2,..., T-n so that each T-i satisfies the following three conditions: (i) area(T-i) = alpha(i) x area(S); (ii) l(T-i boolean AND partial derivative(S)) = alpha(i) x (partial derivative(S)); and (iii) T-i boolean AND partial derivative(S) consists of exactly one continuous curve.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 50 条
  • [21] SEPARATING CONVEX-SETS IN THE PLANE
    CZYZOWICZ, J
    RIVERACAMPO, E
    URRUTIA, J
    ZAKS, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (02) : 189 - 195
  • [22] Symmetries of Convex Sets in the Hyperbolic Plane
    Jeronimo-Castro, Jesus
    Jimenez-Lopez, Francisco G.
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1077 - 1088
  • [23] TOUCHING CONVEX-SETS IN THE PLANE
    KATCHALSKI, M
    PACH, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04): : 495 - 504
  • [24] ON SEPARATION OF PLANE CONVEX-SETS
    RIVERACAMPO, E
    TOROCSIK, J
    EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (02) : 113 - 116
  • [25] COMMON SECANTS FOR PLANE CONVEX SETS
    KLEE, VL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (04) : 639 - 641
  • [26] On convex quadrangulations of point sets on the plane
    Heredia, V. M.
    Urrutia, J.
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 38 - +
  • [27] Generalized balanced partitions of two sets of points in the plane
    Kaneko, A
    Kano, M
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 176 - 186
  • [28] Asymptotic Behaviour of λ-Convex Sets in the Hyperbolic Plane
    Eduardo Gallego
    Agustí Reventós
    Geometriae Dedicata, 1999, 76 : 275 - 289
  • [29] A SEPARATION PROPERTY OF PLANE CONVEX-SETS
    TVERBERG, H
    MATHEMATICA SCANDINAVICA, 1979, 45 (02) : 255 - 260
  • [30] Finding Convex Sets Among Points in the Plane
    D. Kleitman
    L. Pachter
    Discrete & Computational Geometry, 1998, 19 : 405 - 410