Statistical analysis of randomized benchmarking

被引:25
|
作者
Harper, Robin [1 ]
Hincks, Ian [2 ,3 ,4 ]
Ferrie, Chris [5 ]
Flammia, Steven T. [1 ,6 ]
Wallman, Joel J. [2 ,3 ,4 ]
机构
[1] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW, Australia
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[4] Quantum Benchmark Inc, Kitchener, ON N2H 4C3, Canada
[5] Univ Technol Sydney, Ctr Quantum Software & Informat, Sydney, NSW, Australia
[6] Yale Univ, Yale Quantum Inst, New Haven, CT 06520 USA
基金
澳大利亚研究理事会;
关键词
Reliability analysis - Heuristic methods - Quantum computers - Quantum theory;
D O I
10.1103/PhysRevA.99.052350
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Randomized benchmarking and variants thereof, which we collectively call RB+, are widely used to characterize the performance of quantum computers because they are simple, scalable, and robust to state-preparation and measurement errors. However, experimental implementations of RB+ allocate resources suboptimally and make ad-hoc assumptions that undermine the reliability of the data analysis. In this paper, we propose a simple modification of RB+ which rigorously eliminates a nuisance parameter and simplifies the experimental design. We then show that, with this modification and specific experimental choices, RB+ efficiently provides estimates of error rates with multiplicative precision. Finally, we provide a simplified rigorous method for obtaining credible regions for parameters of interest and a heuristic approximation for these intervals that performs well in currently relevant regimes.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] BENCHMARKING NUMERICAL ACCURACY OF STATISTICAL ALGORITHMS
    SIMON, SD
    LESAGE, JP
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 7 (02) : 197 - 209
  • [22] Statistical process control as a tool for controlling operating room performance: retrospective analysis and benchmarking
    Chen, Tsung-Tai
    Chang, Yun-Jau
    Ku, Shei-Ling
    Chung, Kuo-Piao
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2010, 16 (05) : 905 - 910
  • [23] Randomized Benchmarking for Individual Quantum Gates
    Onorati, E.
    Werner, A. H.
    Eisert, J.
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [24] Investigating the limits of randomized benchmarking protocols
    Epstein, Jeffrey M.
    Cross, Andrew W.
    Magesan, Easwar
    Gambetta, Jay M.
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [25] What Randomized Benchmarking Actually Measures
    Proctor, Timothy
    Rudinger, Kenneth
    Young, Kevin
    Sarovar, Mohan
    Blume-Kohout, Robin
    PHYSICAL REVIEW LETTERS, 2017, 119 (13)
  • [26] Randomized Benchmarking of Quantum Gates on a GPU
    Zawad, Syed
    Yan, Feng
    Wu, Rui
    Barford, Lee
    Harris, Frederick C., Jr.
    16TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY-NEW GENERATIONS (ITNG 2019), 2019, 800 : 307 - 315
  • [27] Sampling Strategy Optimization for Randomized Benchmarking
    Itoko, Toshinari
    Raymond, Rudy
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 188 - 198
  • [28] Characterization of Addressability by Simultaneous Randomized Benchmarking
    Gambetta, Jay M.
    Corcoles, A. D.
    Merkel, S. T.
    Johnson, B. R.
    Smolin, John A.
    Chow, Jerry M.
    Ryan, Colm A.
    Rigetti, Chad
    Poletto, S.
    Ohki, Thomas A.
    Ketchen, Mark B.
    Steffen, M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (24)
  • [29] Three-Qubit Randomized Benchmarking
    McKay, David C.
    Sheldon, Sarah
    Smolin, John A.
    Chow, Jerry M.
    Gambetta, Jay M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (20)
  • [30] Effect of noise correlations on randomized benchmarking
    Ball, Harrison
    Stace, Thomas M.
    Flammia, Steven T.
    Biercuk, Michael J.
    PHYSICAL REVIEW A, 2016, 93 (02)