Stress ratio and the fatigue damage map - Part II: The 2024-T351 aluminium alloy

被引:20
|
作者
Rodopoulos, CA
Choi, JH
de los Rios, ER
Yates, JR
机构
[1] Sheffield Hallam Univ, Mat Res Inst, Sheffield S1 1WB, S Yorkshire, England
[2] Univ Sheffield, Struct Integr Res Inst, Dept Engn Mech, Sheffield S1 3JD, S Yorkshire, England
[3] Hyundai Motor Co, Res & Dev Div, Whasung 445850, South Korea
关键词
stress ratio; short cracks; 2024; fatigue damage map;
D O I
10.1016/j.ijfatigue.2003.10.018
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this second part an experimental matrix designed to verify the modelling in part 1 is presented. The obtained experimental data consist of crack growth rates, S-N Curves, crack arrest curves and an extensive fractographic analysis to measure Stage I to Stage II and Stage II to Stage III transitions. Comparisons between the experimental data and the modelling confirmed that the concept of the fatigue damage map can be used to predict the effect of the stress ratio on the fatigue behaviour of the 2024-T351 aluminium alloy. Prediction error in the case of the crack arrest behaviour is also acknowledged. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 50 条
  • [41] PREDICTION OF RESIDUAL STRESS RELAXATION OF SHOT PEENED 2024-T351 ALUMINUM ALLOY: PART 2.
    Zaroog, Omar Suliman
    Ali, Aidy
    Sahari, B. B.
    FRACTURE AND STRENGTH OF SOLIDS VII, PTS 1 AND 2, 2011, 462-463 : 1349 - 1354
  • [42] Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation
    Menan, Frederic
    Henaff, Gilbert
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 519 (1-2): : 70 - 76
  • [43] On the use of NASGRO software to estimate fatigue crack growth under variable amplitude loading in aluminium alloy 2024-T351
    Moreno, B.
    Martin, A.
    Lopez-Crespo, P.
    Zapatero, J.
    Dominguez, J.
    3RD INTERNATIONAL CONFERENCE ON MATERIAL AND COMPONENT PERFORMANCE UNDER VARIABLE AMPLITUDE LOADING, VAL 2015, 2015, 101 : 302 - 311
  • [44] EFFECT OF COMPRESSIVE UNDERLOADS AND TENSILE OVERLOADS ON FATIGUE DAMAGE ACCUMULATION IN 2024-T351 ALUMINUM
    POMPETZKI, MA
    TOPPER, TH
    DUQUESNAY, DL
    YU, MT
    JOURNAL OF TESTING AND EVALUATION, 1990, 18 (01) : 53 - 61
  • [45] Characterization of Shot Peened 2024-T351 Aluminum Alloy
    Zaroog, Omar Suliman
    Ali, Aidy
    Sahari, B. B.
    FRACTURE AND STRENGTH OF SOLIDS VII, PTS 1 AND 2, 2011, 462-463 : 912 - 917
  • [46] The effect of corrosion preventative compound on fatigue crack growth properties of 2024-T351 aluminium alloys
    Purry, C
    Fien, A
    Shankar, K
    INTERNATIONAL JOURNAL OF FATIGUE, 2003, 25 (9-11) : 1175 - 1180
  • [47] EFFECT OF DIFFUSED HYDROGEN ON TORSIONAL FATIGUE LIFE OF 2024-T351 ALUMINUM-ALLOY
    KAUFFMANN, CJ
    MABIE, HH
    EXPERIMENTAL MECHANICS, 1978, 18 (05) : N44 - N44
  • [48] Effect of load histories on scatter of fatigue crack growth in aluminum alloy 2024-T351
    Dominguez, J
    Zapatero, J
    Pascual, J
    ENGINEERING FRACTURE MECHANICS, 1997, 56 (01) : 65 - 76
  • [49] Enhancement of fatigue properties of 2024-T351 aluminum alloy processed by cryogenic laser peening
    Li, Jing
    Feng, Aixin
    Zhou, Jianzhong
    Chen, Huan
    Sun, Yunjie
    Tian, Xuliang
    Huang, Yu
    Huang, Shu
    VACUUM, 2019, 164 : 41 - 45
  • [50] DETERMINATIONS OF JIC FOR 2024-T351 ALUMINUM-ALLOY
    BEAVER, PW
    HELLER, M
    ROSE, TV
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1987, 10 (06) : 495 - 506