Stress ratio and the fatigue damage map - Part II: The 2024-T351 aluminium alloy

被引:20
|
作者
Rodopoulos, CA
Choi, JH
de los Rios, ER
Yates, JR
机构
[1] Sheffield Hallam Univ, Mat Res Inst, Sheffield S1 1WB, S Yorkshire, England
[2] Univ Sheffield, Struct Integr Res Inst, Dept Engn Mech, Sheffield S1 3JD, S Yorkshire, England
[3] Hyundai Motor Co, Res & Dev Div, Whasung 445850, South Korea
关键词
stress ratio; short cracks; 2024; fatigue damage map;
D O I
10.1016/j.ijfatigue.2003.10.018
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this second part an experimental matrix designed to verify the modelling in part 1 is presented. The obtained experimental data consist of crack growth rates, S-N Curves, crack arrest curves and an extensive fractographic analysis to measure Stage I to Stage II and Stage II to Stage III transitions. Comparisons between the experimental data and the modelling confirmed that the concept of the fatigue damage map can be used to predict the effect of the stress ratio on the fatigue behaviour of the 2024-T351 aluminium alloy. Prediction error in the case of the crack arrest behaviour is also acknowledged. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 50 条
  • [21] Experiments and numerical approaches to ductile tearing in an 2024-T351 aluminium alloy
    Imad, A
    Wilsius, J
    Abdelaziz, MN
    Mesmacque, G
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2003, 45 (11) : 1849 - 1861
  • [22] Localized corrosion of laser surface melted 2024-T351 aluminium alloy
    Li, R
    Ferreira, MGS
    Almeida, A
    Vilar, R
    Watkins, KG
    McMahon, MA
    Steen, WM
    SURFACE & COATINGS TECHNOLOGY, 1996, 81 (2-3): : 290 - 296
  • [23] Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening
    Meng, Xian-kai
    Wang, Hui
    Tan, Wen-sheng
    Cai, Jie
    Zhou, Jian-zhong
    Liu, Lin
    SURFACE & COATINGS TECHNOLOGY, 2020, 391
  • [24] Fatigue crack characterisation in 2024-T351 aluminium alloy through SEM observation combined with the CJP model
    Robles, J. M.
    Vasco-Olmo, J. M.
    Cruces, A. S.
    Diaz, F. A.
    James, M. N.
    Lopez-Crespo, P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 166
  • [25] FATIGUE OF ALUMINUM-ALLOY 2024-T351 IN HUMID AND DRY AIR
    VORIS, HC
    JAHN, MT
    JOURNAL OF MATERIALS SCIENCE, 1990, 25 (11) : 4708 - 4711
  • [26] Recovery of fatigue life using laser peening on 2024-T351 aluminium sheet containing scratch damage: The role of residual stress
    Smyth, Niall A.
    Toparli, M. Burak
    Fitzpatrick, Michael E.
    Irving, Phil E.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (05) : 1161 - 1174
  • [27] Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy
    Szolwinski, MP
    Farris, TN
    WEAR, 1998, 221 (01) : 24 - 36
  • [28] Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy-part I: experimentation and fractographic analysis
    Cini, A.
    Irving, P. E.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (05) : 776 - 789
  • [29] Experimental study on laser peen forming of aluminium alloy 2024-T351 plate
    Huang, X.
    Zeng, Y. S.
    Wang, M. T.
    Zou, S. K.
    19TH INTERNATIONAL CONFERENCE ON METAL FORMING, MF 2022, 2022, 1270
  • [30] Investigations on the impact of the hole surface integrity on the fatigue life of a 2024-T351 aluminum alloy drilled part
    Lacombe, Alexandra
    Landon, Yann
    Paredes, Manuel
    Texier, Damien
    Chirol, Clement
    Benaben, Audrey
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (06) : 1455 - 1468