Numerical Evaluation of the Gauss Hypergeometric Function with the hypergeo Package

被引:0
|
作者
Hankin, Robin K. S. [1 ]
机构
[1] Auckland Univ Technol, Hamilton, New Zealand
来源
R JOURNAL | 2015年 / 7卷 / 02期
关键词
ANALYTIC CONTINUATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces the hypergeo package of R routines for numerical calculation of hypergeometric functions. The package is focussed on efficient and accurate evaluation of the Gauss hypergeometric function over the whole of the complex plane within the constraints of fixed-precision arithmetic. The hypergeometric series is convergent only within the unit circle, so analytic continuation must be used to define the function outside the unit circle. This short document outlines the numerical and conceptual methods used in the package; and justifies the package philosophy, which is to maintain transparent and verifiable links between the software and Abramowitz and Stegun (1965). Most of the package functionality is accessed via the single function hypergeo(), which dispatches to one of several methods depending on the value of its arguments. The package is demonstrated in the context of game theory.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] NUMERICAL EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION BY POWER SUMMATIONS
    Doornik, Jurgen A.
    MATHEMATICS OF COMPUTATION, 2015, 84 (294) : 1813 - 1833
  • [2] ON THE EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION
    KALLA, SL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (06): : 35 - 36
  • [3] Gauss' hypergeometric function
    Beukers, Frits
    ARITHMETIC AND GEOMETRY AROUND HYPERGEOMETRIC FUNCTIONS, 2007, 260 : 23 - 42
  • [4] ON THE GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION
    Virchenko, N. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2008, (01): : 154 - 156
  • [5] Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
    Yadav, Komal Singh
    Sharan, Bhagwat
    Verma, Ashish
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024,
  • [6] IRRATIONALITY OF GAUSS HYPERGEOMETRIC FUNCTION VALUES
    VASILENKO, ON
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1985, (03): : 15 - 18
  • [7] FINITE SUM EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION IN AN IMPORTANT SPECIAL CASE
    DETRICH, J
    CONN, RW
    MATHEMATICS OF COMPUTATION, 1979, 33 (146) : 788 - 791
  • [8] Multidomain spectral method for the Gauss hypergeometric function
    Crespo, S.
    Fasondini, M.
    Klein, C.
    Stoilov, N.
    Vallee, C.
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 1 - 35
  • [9] On the linear independence of the values of Gauss hypergeometric function
    Merila, Ville
    ACTA ARITHMETICA, 2010, 144 (04) : 349 - 371
  • [10] New series expansions of the Gauss hypergeometric function
    Lopez, Jose L.
    Temme, Nico M.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 349 - 365