A Markov chain analysis of genetic algorithms with power of 2 cardinality alphabets

被引:10
|
作者
Aytug, H
Bhattacharrya, S
Koehler, GJ
机构
[1] PURDUE UNIV, KRANNERT SCH MANAGEMENT, W LAFAYETTE, IN 47907 USA
[2] SO ILLINOIS UNIV, DEPT MANAGEMENT, CARBONDALE, IL 62901 USA
[3] MICHIGAN TECHNOL UNIV, SCH BUSINESS & ENGN ADM, HOUGHTON, MI 49931 USA
关键词
genetic algorithm; stopping criteria; higher cardinality;
D O I
10.1016/S0377-2217(96)00121-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we model the run time behavior of GAs using higher cardinality representations as Markov Chains, define the states of the Markov Chain and derive the transition probabilities of the corresponding transition matrix. We analyze the behavior of this chain and obtain bounds on its convergence rate and bounds on the runtime complexity of the GA. We further investigate the effects of using binary versus higher cardinality representation of a search space.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [41] Genetic algorithms in supply chain management: A critical analysis of the literature
    Jauhar, Sunil Kumar
    Pant, Millie
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (09): : 993 - 1017
  • [42] Exact schema theory and Markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover
    Poli R.
    McPhee N.F.
    Rowe J.E.
    Genetic Programming and Evolvable Machines, 2004, 5 (1) : 31 - 70
  • [43] Economic design of variable sampling interval T2 control charts -: A hybrid Markov Chain approach with genetic algorithms
    Chen, Yan-Kwang
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (03) : 683 - 689
  • [44] MARKOV CHAINS GENETIC ALGORITHMS FOR AIRPORT SCHEDULING
    Chen, Chen
    Wang, Guan
    Szeto, K. Y.
    COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 905 - +
  • [45] ALGORITHMS ESTABLISHING CORRESPONDENCE BETWEEN 2 LETTERS OF DIFFERENT ALPHABETS
    SUKHOTIN, BV
    NAUCHNO-TEKHNICHESKAYA INFORMATSIYA, 1966, (02): : 38 - &
  • [46] An investigation into Markov chain Monte Carlo algorithms for Subset simulation: Emphasizing uncertainty analysis
    Liao, Zihan
    Xia, Weili
    He, Xiao
    COMPUTERS & STRUCTURES, 2024, 294
  • [47] MARKOV-CHAIN ALGORITHMS FOR CANONICAL ENSEMBLE SIMULATION
    KRAJCI, M
    COMPUTER PHYSICS COMMUNICATIONS, 1986, 42 (01) : 29 - 35
  • [48] Simulation Algorithms for Continuous Time Markov Chain Models
    Banks, H. T.
    Broido, Anna
    Canter, Brandi
    Gayvert, Kaitlyn
    Hu, Shuhua
    Joyner, Michele
    Link, Kathryn
    SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 : 3 - 18
  • [49] Laplace expansions in Markov chain Monte Carlo algorithms
    Guthenneuc-Jouyaux, C
    Rousseau, J
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (01) : 75 - 94
  • [50] Markov Chain Monte Carlo Algorithms: Theory and Practice
    Rosenthal, Jeffrey S.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 157 - 169