A Markov chain analysis of genetic algorithms with power of 2 cardinality alphabets

被引:10
|
作者
Aytug, H
Bhattacharrya, S
Koehler, GJ
机构
[1] PURDUE UNIV, KRANNERT SCH MANAGEMENT, W LAFAYETTE, IN 47907 USA
[2] SO ILLINOIS UNIV, DEPT MANAGEMENT, CARBONDALE, IL 62901 USA
[3] MICHIGAN TECHNOL UNIV, SCH BUSINESS & ENGN ADM, HOUGHTON, MI 49931 USA
关键词
genetic algorithm; stopping criteria; higher cardinality;
D O I
10.1016/S0377-2217(96)00121-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we model the run time behavior of GAs using higher cardinality representations as Markov Chains, define the states of the Markov Chain and derive the transition probabilities of the corresponding transition matrix. We analyze the behavior of this chain and obtain bounds on its convergence rate and bounds on the runtime complexity of the GA. We further investigate the effects of using binary versus higher cardinality representation of a search space.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [31] Markov chain algorithms: a template for building future robust low-power systems
    Deka, Biplab
    Birklykke, Alex A.
    Duwe, Henry
    Mansinghka, Vikash K.
    Kumar, Rakesh
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2018):
  • [32] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    BERNOULLI, 2005, 11 (05) : 815 - 828
  • [33] Markov chain algorithms for planar lattice structures
    Luby, M
    Randall, D
    Sinclair, A
    SIAM JOURNAL ON COMPUTING, 2001, 31 (01) : 167 - 192
  • [34] Algorithms for variable length Markov chain modeling
    Bejerano, G
    BIOINFORMATICS, 2004, 20 (05) : 788 - U729
  • [35] Proximal Markov chain Monte Carlo algorithms
    Pereyra, Marcelo
    STATISTICS AND COMPUTING, 2016, 26 (04) : 745 - 760
  • [36] Proximal Markov chain Monte Carlo algorithms
    Marcelo Pereyra
    Statistics and Computing, 2016, 26 : 745 - 760
  • [37] Resampling Markov Chain Monte Carlo Algorithms: Basic Analysis and Empirical Comparisons
    Tan, Zhiqiang
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (02) : 328 - 356
  • [38] Improving Markov Chain Monte Carlo algorithms in LISA Pathfinder Data Analysis
    Karnesis, N.
    Nofrarias, M.
    Sopuerta, C. F.
    Lobo, A.
    9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
  • [39] Monte Carlo Markov chain methods and model selection in genetic analysis
    Wijsman, EM
    ANIMAL BIOTECHNOLOGY, 1997, 8 (01) : 129 - 144
  • [40] Genetic algorithms in supply chain management: A critical analysis of the literature
    Sunil Kumar Jauhar
    Millie Pant
    Sādhanā, 2016, 41 : 993 - 1017