Analysing chaos in fractional-order systems with the harmonic balance method

被引:0
|
作者
Wu Zheng-Mao [1 ]
Lu Jun-Guo [1 ]
Xie Jian-Ying [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 06期
关键词
fractional-order system; harmonic balance principle; Genesio-Tesi system; chaos; Lur'e system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, a theoretical approach is used to investigate the conditions of system parameters under which this fractional-order system can give rise to a chaotic attractor. Finally, the numerical simulation is used to verify the validity of the theoretical results.
引用
收藏
页码:1201 / 1207
页数:7
相关论文
共 50 条
  • [31] Suppressing chaos in fractional-order systems by periodic perturbations on system variables
    Marius-F. Danca
    Wallace K. S. Tang
    Qingyun Wang
    Guanrong Chen
    The European Physical Journal B, 2013, 86
  • [32] On fractional-order discrete-time systems: Chaos, stabilization and synchronization
    Khennaoui, Amina-Aicha
    Ouannas, Adel
    Bendoukha, Samir
    Grassi, Giuseppe
    Lozi, Rene Pierre
    Viet-Thanh Pham
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 150 - 162
  • [33] Suppressing chaos in fractional-order systems by periodic perturbations on system variables
    Danca, Marius-F.
    Tang, Wallace K. S.
    Wang, Qingyun
    Chen, Guanrong
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (03):
  • [34] Chaos generation in fractional-order switched systems and its digital implementation
    Zambrano-Serrano, E.
    Munoz-Pacheco, J. M.
    Campos-Canton, E.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 79 : 43 - 52
  • [35] Chaos detection and parameter identification in fractional-order chaotic systems with delay
    Yuan, Liguo
    Yang, Qigui
    Zeng, Caibin
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 439 - 448
  • [36] Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects
    Echenausia-Monroy, Jose Luis
    Quezada-Tellez, Luis Alberto
    Gilardi-Velazquez, Hector Eduardo
    Ruiz-Martinez, Omar Fernando
    Heras-Sanchez, Maria del Carmen
    Lozano-Rizk, Jose E.
    Cuesta-Garcia, Jose Ricardo
    Marquez-Martinez, Luis Alejandro
    Rivera-Rodriguez, Raul
    Ramirez, Jonatan Pena
    Alvarez, Joaquin
    FRACTAL AND FRACTIONAL, 2025, 9 (01)
  • [37] Chaos synchronization between two different fractional-order hyperchaotic systems
    Pan, Lin
    Zhou, Wuneng
    Zhou, Long
    Sun, Kehui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2628 - 2640
  • [38] Chaos detection of Duffing system with fractional-order derivative by Melnikov method
    Niu, Jiangchuan
    Liu, Ruyu
    Shen, Yongjun
    Yang, Shaopu
    CHAOS, 2019, 29 (12)
  • [39] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [40] A method for the integer-order approximation of fractional-order systems
    Krajewski, W.
    Viaro, U.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01): : 555 - 564