Analysing chaos in fractional-order systems with the harmonic balance method

被引:0
|
作者
Wu Zheng-Mao [1 ]
Lu Jun-Guo [1 ]
Xie Jian-Ying [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 06期
关键词
fractional-order system; harmonic balance principle; Genesio-Tesi system; chaos; Lur'e system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, a theoretical approach is used to investigate the conditions of system parameters under which this fractional-order system can give rise to a chaotic attractor. Finally, the numerical simulation is used to verify the validity of the theoretical results.
引用
收藏
页码:1201 / 1207
页数:7
相关论文
共 50 条
  • [21] Chaos in the fractional-order Lorenz system
    Wu, Xiang-Jun
    Shen, Shi-Lei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1274 - 1282
  • [22] CHAOS IN FRACTIONAL-ORDER POPULATION MODEL
    Petras, Ivo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [23] Chaos in a Fractional-Order Cancer System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 171 - 176
  • [24] Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method
    Li, Sujuan
    Niu, Jiangchuan
    Li, Xianghong
    CHINESE PHYSICS B, 2018, 27 (12)
  • [25] Pade Approximation Method For Fractional-Order Systems
    Jagodzinski, Jacek
    Lampasiak, Marta
    2024 25TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE, ICCC 2024, 2024,
  • [26] The synchronization method for fractional-order hyperchaotic systems
    Feng, Dali
    An, Hongli
    Zhu, Haixing
    Zhao, Yunfeng
    PHYSICS LETTERS A, 2019, 383 (13) : 1427 - 1434
  • [27] Dynamical Behavior of Fractional-Order Delayed Feedback Control on the Mathieu Equation by Incremental Harmonic Balance Method
    Wen, Shaofang
    Shen, Yongjun
    Niu, Jiangchuan
    Liu, Yunfei
    SHOCK AND VIBRATION, 2022, 2022
  • [28] Chaos detection and parameter identification in fractional-order chaotic systems with delay
    Liguo Yuan
    Qigui Yang
    Caibin Zeng
    Nonlinear Dynamics, 2013, 73 : 439 - 448
  • [29] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Marius-F Danca
    Wallace K S Tang
    Chinese Physics B, 2016, (01) : 511 - 517
  • [30] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Danca, Marius-F
    Tang, Wallace K. S.
    CHINESE PHYSICS B, 2016, 25 (01)