On a theorem of Erdos and Sarkozy

被引:0
|
作者
Chen, Yong-Gao [1 ,2 ]
Tang, Min [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[3] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2013年 / 83卷 / 03期
基金
中国国家自然科学基金;
关键词
General sequences; additive representation functions;
D O I
10.5486/PMD.2013.5536
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = {a(1), a(2),...}(a(1) <= a(2) <= ...) be an infinite sequence of nonnegative integers, k >= 2 be a fixed integer and denote by R-k (n) the number of solutions of a(i1) + a(i2) + ... + a(ik) = n. In this paper, we prove that if g(n) is a monotonically increasing arithmetic function with g(n) -> +infinity and g(n) = o(n(log n)(-2)), then for any 0 < epsilon < 1, vertical bar R-k(n) - g(n)vertical bar > ([k/2]! - epsilon)root g(n) holds for infinitely many positive integers n. We also prove that for a positive integer d, if R-k(n) >= d for all sufficiently large integers n, then R-k(n) >= d + 2[k/2]!root d + ([k/2]!)(2) for infinitely many positive integers n.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 50 条
  • [41] A LOCALIZED ERDOS-WINTNER THEOREM
    ELLIOTT, PDTA
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 135 (02) : 287 - 297
  • [42] Erdos-Szekeres Theorem for Lines
    Barany, Imre
    Roldan-Pensado, Edgardo
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 669 - 685
  • [43] An Aα-spectral Erdos-Posa theorem
    Li, Shuchao
    Yu, Yuantian
    Zhang, Huihui
    DISCRETE MATHEMATICS, 2023, 346 (09)
  • [44] A SHORT PROOF OF A THEOREM OF ERDOS AND MORDELL
    AVEZ, A
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01): : 60 - 62
  • [45] On the Erdos-Ginzburg-Ziv theorem
    Flores, C
    Ordaz, O
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 321 - 324
  • [46] Note on the Erdos-Graham theorem
    Petermann, Y-F. S.
    ACTA ARITHMETICA, 2010, 145 (04) : 411 - 412
  • [47] ON GENERALIZATIONS OF THE DEBRUIJN-ERDOS THEOREM
    SNEVILY, HS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 68 (01) : 232 - 238
  • [48] A strengthening of the Erdos-Szekeres Theorem
    Balogh, Jozsef
    Clemen, Felix Christian
    Heath, Emily
    Lavrov, Mikhail
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [49] Generalization of Erdos-Kac theorem
    Sun, Yalin
    Wu, Lizhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (06) : 1303 - 1316
  • [50] A NOTE ON THE ERDOS-GRAHAM THEOREM
    Wang, Wenhui
    Tang, Min
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (03) : 363 - 366