Erdos-Szekeres Theorem for Lines

被引:2
|
作者
Barany, Imre [1 ,2 ]
Roldan-Pensado, Edgardo [1 ,3 ]
Toth, Geza [1 ]
机构
[1] MTA Renyi Inst Math, H-1053 Budapest, Hungary
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Inst Matemat, Juriquilla 76230, Queretaro, Mexico
关键词
Erdos-Szekeres theorem; Line arrangements; Duality; Convex position; ARRANGEMENTS; POINTS; NUMBER; SETS;
D O I
10.1007/s00454-015-9705-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
According to the ErdAs-Szekeres theorem, for every n, a sufficiently large set of points in general position in the plane contains n in convex position. In this note we investigate the line version of this result, that is, we want to find n lines in convex position in a sufficiently large set of lines that are in general position. We prove almost matching upper and lower bounds for the minimum size of the set of lines in general position that always contains n in convex position. This is quite unexpected, since in the case of points, the best known bounds are very far from each other. We also establish the dual versions of many variants and generalizations of the ErdAs-Szekeres theorem.
引用
收藏
页码:669 / 685
页数:17
相关论文
共 50 条
  • [1] Note on the Erdos-Szekeres theorem
    Toth, G
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 457 - 459
  • [2] A remark on the Erdos-Szekeres theorem
    Dumitrescu, A
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (10): : 921 - 924
  • [3] A strengthening of the Erdos-Szekeres Theorem
    Balogh, Jozsef
    Clemen, Felix Christian
    Heath, Emily
    Lavrov, Mikhail
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [4] The partitioned version of the Erdos-Szekeres theorem
    Pór, A
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) : 625 - 637
  • [5] A modular version of the Erdos-Szekeres theorem
    Károlyi, G
    Pach, J
    Tóth, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 38 : 245 - 259
  • [6] SOME NOTES ON THE ERDOS-SZEKERES THEOREM
    BIALOSTOCKI, A
    DIERKER, P
    VOXMAN, B
    DISCRETE MATHEMATICS, 1991, 91 (03) : 231 - 238
  • [7] A positive fraction Erdos-Szekeres theorem
    Barany, I
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 335 - 342
  • [8] Erdos-Szekeres Theorem for k-Flats
    Barany, Imre
    Kalai, Gil
    Por, Attila
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1232 - 1240
  • [9] A partitioned version of the Erdos-Szekeres theorem for quadrilaterals
    Pór, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 321 - 336
  • [10] AN EXTENSION OF THE ERDOS-SZEKERES THEOREM ON LARGE ANGLES
    BARANY, I
    COMBINATORICA, 1987, 7 (02) : 161 - 169