Erdos-Szekeres Theorem for Lines

被引:2
|
作者
Barany, Imre [1 ,2 ]
Roldan-Pensado, Edgardo [1 ,3 ]
Toth, Geza [1 ]
机构
[1] MTA Renyi Inst Math, H-1053 Budapest, Hungary
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Inst Matemat, Juriquilla 76230, Queretaro, Mexico
关键词
Erdos-Szekeres theorem; Line arrangements; Duality; Convex position; ARRANGEMENTS; POINTS; NUMBER; SETS;
D O I
10.1007/s00454-015-9705-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
According to the ErdAs-Szekeres theorem, for every n, a sufficiently large set of points in general position in the plane contains n in convex position. In this note we investigate the line version of this result, that is, we want to find n lines in convex position in a sufficiently large set of lines that are in general position. We prove almost matching upper and lower bounds for the minimum size of the set of lines in general position that always contains n in convex position. This is quite unexpected, since in the case of points, the best known bounds are very far from each other. We also establish the dual versions of many variants and generalizations of the ErdAs-Szekeres theorem.
引用
收藏
页码:669 / 685
页数:17
相关论文
共 50 条
  • [21] Problems and results around the Erdos-Szekeres convex polygon theorem
    Bárány, I
    Károlyi, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 91 - 105
  • [22] Chromatic variants of the Erdos-Szekeres theorem on points in convex position
    Devillers, O
    Hurtado, F
    Károlyi, G
    Seara, C
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (03): : 193 - 208
  • [23] Ramsey-remainder for convex sets and the Erdos-Szekeres theorem
    Károlyi, G
    DISCRETE APPLIED MATHEMATICS, 2001, 109 (1-2) : 163 - 175
  • [24] A GENERALIZATION OF THE ERDOS-SZEKERES CONVEX N-GON THEOREM
    BISZTRICZKY, T
    TOTH, GF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 167 - 170
  • [25] Erdos-Szekeres Without Induction
    Norin, Sergey
    Yuditsky, Yelena
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (04) : 963 - 971
  • [26] ON LOWER BOUNDS FOR ERDOS-SZEKERES PRODUCTS
    Billsborough, C.
    Freedman, M.
    Hart, S.
    Kowalsky, G.
    Lubinsky, D.
    Pomeranz, A.
    Sammel, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4233 - 4246
  • [27] A SAT attack on the Erdos-Szekeres conjecture
    Balko, Martin
    Valtr, Pavel
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 66 : 13 - 23
  • [28] Ramsey Theory, integer partitions and a new proof of the Erdos-Szekeres Theorem
    Moshkovitz, Guy
    Shapira, Asaf
    ADVANCES IN MATHEMATICS, 2014, 262 : 1107 - 1129
  • [29] Root systems and the Erdos-Szekeres problem
    Maltby, R
    ACTA ARITHMETICA, 1997, 81 (03) : 229 - 245
  • [30] Mechanical Proving for ERDOS-SZEKERES Problem
    Shan, Meijing
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 49 - 53