SPECTRAL RADIUS OF A NONNEGATIVE MATRIX: FROM ROME TO INDY

被引:0
|
作者
Misiurewicz, Michal [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
关键词
Spectral radius; digraph; topological entropy; rome method;
D O I
10.1090/S0002-9939-2013-11846-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the rome method of computing the spectral radius of a nonnegative matrix, used often in one-dimensional dynamics, to the indy method, which works well in many cases when using the rome method is difficult.
引用
收藏
页码:3977 / 3983
页数:7
相关论文
共 50 条
  • [31] Optimization of the spectral radius of a product for nonnegative matrices
    Axtell, Jonathan
    Han, Lixing
    Hershkowitz, Daniel
    Neumann, Michael
    Sze, Nung-Sing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) : 1442 - 1451
  • [32] Spectral radius of some special nonnegative matrices
    Nazari, A.M.
    Parval, S.
    World Academy of Science, Engineering and Technology, 2010, 69 : 69 - 70
  • [33] ON THE SPECTRAL RADIUS OF HADAMARD PRODUCTS OF NONNEGATIVE MATRICES
    Chen, Dongjun
    Zhang, Yun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (02): : 127 - 133
  • [34] Spectral radius of some special nonnegative matrices
    Nazari, A.M.
    Parval, S.
    World Academy of Science, Engineering and Technology, 2010, 70 : 69 - 70
  • [35] On sharp bounds for spectral radius of nonnegative matrices
    Lin, Hongying
    Zhou, Bo
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (08): : 1554 - 1565
  • [36] New bounds for the spectral radius for nonnegative tensors
    Li, Lixia
    Li, Chaoqian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [37] Some bounds for the spectral radius of nonnegative tensors
    Li, Wen
    Ng, Michael K.
    NUMERISCHE MATHEMATIK, 2015, 130 (02) : 315 - 335
  • [38] Spectral radius of some special nonnegative matrices
    Nazari, A.M.
    Parval, S.
    World Academy of Science, Engineering and Technology, 2010, 42 : 153 - 154
  • [39] An algorithm for computing the spectral radius of nonnegative tensors
    Liu, Qilong
    Chen, Zhen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02): : 1 - 14
  • [40] Some bounds for the spectral radius of nonnegative tensors
    Wen Li
    Michael K. Ng
    Numerische Mathematik, 2015, 130 : 315 - 335