Spectral radius of some special nonnegative matrices

被引:0
|
作者
Nazari, A.M. [1 ]
Parval, S. [1 ]
机构
[1] Department of mathematics, Arak university of Iran, Iran
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper for two X-form nonnegative matrices A and B we show that if A-B be a symmetric positive semi-definite matrix then the spectral radius of matrix A greater than or equal matrix B.
引用
收藏
页码:69 / 70
相关论文
共 50 条
  • [1] Spectral radius of some special nonnegative matrices
    Nazari, A.M.
    Parval, S.
    World Academy of Science, Engineering and Technology, 2010, 69 : 69 - 70
  • [2] Spectral radius of some special nonnegative matrices
    Nazari, A.M.
    Parval, S.
    World Academy of Science, Engineering and Technology, 2010, 42 : 153 - 154
  • [3] Spectral radius of some special nonnegative matrices
    Nazari, A.M.
    Parval, S.
    World Academy of Science, Engineering and Technology, 2010, 66 : 153 - 154
  • [4] SOME INEQUALITIES FOR SPECTRAL RADIUS OF NONNEGATIVE MATRICES AND APPLICATIONS
    FRIEDLAND, S
    KARLIN, S
    DUKE MATHEMATICAL JOURNAL, 1975, 42 (03) : 459 - 490
  • [5] Some new bounds on the spectral radius of nonnegative matrices
    Adam, Maria
    Aggeli, Dimitra
    Aretaki, Aikaterini
    AIMS MATHEMATICS, 2020, 5 (01): : 701 - 716
  • [6] OPTIMIZATION OF THE SPECTRAL RADIUS OF NONNEGATIVE MATRICES
    Neumann, Michael
    Sze, Nung-Sing
    OPERATORS AND MATRICES, 2007, 1 (04): : 593 - 601
  • [7] On the joint spectral radius of nonnegative matrices
    Bui, Vuong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 654 : 89 - 101
  • [8] CALCULATION OF SPECTRAL RADIUS OF NONNEGATIVE MATRICES
    SCHULZENDORFF, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T443 - T444
  • [9] Bounds on the Spectral Radius of Nonnegative Matrices
    Babouklis, Fotis
    Adam, Maria
    Assimakis, Nicholas
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCE AND ENGINEERING (MACISE 2020), 2020, : 51 - +
  • [10] Some new inequalities on spectral radius for the Hadamard product of nonnegative matrices
    Xu, Yangyang
    Shao, Licai
    Dong, Tiantian
    He, Guinan
    Chen, Zimo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2025,