Depth and Stanley depth of the canonical form of a factor of monomial ideals

被引:0
|
作者
Popescu, Adrian [1 ]
机构
[1] Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany
关键词
Depth; Stanley depth; monomial ideals;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a so called canonical form of a factor of two monomial ideals. The depth and the Stanley depth of such a factor are invariant under taking the canonical form. This can be seen using a result of Okazaki and Yanagawa [7]. In the case of depth we present a different proof. It follows easily that the Stanley Conjecture holds for the factor if and only if it holds for its canonical form. In particular, we construct an algorithm which simplifies the depth computation and using the canonical form we massively reduce the run time for the sdepth computation.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [31] STANLEY DEPTH OF EDGE IDEALS
    Ishaq, Muhammad
    Qureshi, Muhammad Imran
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (04) : 501 - 508
  • [32] Depth, Stanley depth, and regularity of ideals associated to graphs
    Fakhari, S. A. Seyed
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 461 - 471
  • [33] Squarefree Monomial Ideals with Maximal Depth
    Ahad Rahimi
    Czechoslovak Mathematical Journal, 2020, 70 : 1111 - 1124
  • [34] Depth, Stanley depth, and regularity of ideals associated to graphs
    S. A. Seyed Fakhari
    Archiv der Mathematik, 2016, 107 : 461 - 471
  • [35] Depth of some special monomial ideals
    Popescu, Dorin
    Zarojanu, Andrei
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 365 - 368
  • [36] UPPER BOUNDS OF DEPTH OF MONOMIAL IDEALS
    Popescu, Dorin
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (02) : 323 - 327
  • [37] Squarefree Monomial Ideals with Maximal Depth
    Rahimi, Ahad
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (04) : 1111 - 1124
  • [38] NONINCREASING DEPTH FUNCTIONS OF MONOMIAL IDEALS
    Matsuda, Kazunori
    Suzuki, Tao
    Tsuchiya, Akiyoshi
    GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (02) : 505 - 511
  • [39] How to compute the Stanley depth of a monomial ideal
    Herzog, Huergen
    Vladoiu, Marius
    Zheng, Xinxian
    JOURNAL OF ALGEBRA, 2009, 322 (09) : 3151 - 3169
  • [40] On the Stanley depth of powers of edge ideals
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2017, 489 : 463 - 474