Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data

被引:3
|
作者
Leipus, Remigijus [1 ,2 ]
Philippe, Anne [3 ,4 ]
Pilipauskaite, Vytaute [2 ,3 ]
Surgailis, Donatas [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, Akad 4, LT-08663 Vilnius, Lithuania
[3] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
[4] ANJA INRIA Rennes Bretagne Atlantique, Rennes, France
关键词
Random-coefficient autoregression; Empirical process; Kolmogorov-Smirnov statistic; Goodness-of-fit testing; Kernel density estimator; Panel data; LONG MEMORY; DISAGGREGATION SCHEME; RANDOM-VARIABLES; AGGREGATION; INEQUALITIES; MODEL;
D O I
10.1016/j.jmva.2016.09.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss nonparametric estimation of the distribution function G(x) of the autoregressive coefficient a is an element of (-1, 1) from a panel of N random-coefficient AR(1) data, each of length n, by the empirical distribution function of lag 1 sample autocorrelations of individual AR(1) processes. Consistency and asymptotic normality of the empirical distribution function and a class of kernel density estimators is established under some regularity conditions on G(x) as N and n increase to infinity. The Kolmogorov-Smirnov goodness-of-fit test for simple and composite hypotheses of Beta distributed a is discussed. A simulation study for goodness of-fit testing compares the finite-sample performance of our nonparametric estimator to the performance of its parametric analogue discussed in Beran et al. (2010). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 135
页数:15
相关论文
共 50 条
  • [31] Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient
    Xinghui Wang
    Wenjing Geng
    Ruidong Han
    Qifa Xu
    Methodology and Computing in Applied Probability, 2023, 25
  • [32] Least squares estimation in a simple random coefficient autoregressive model
    Johansen, Soren
    Lange, Theis
    JOURNAL OF ECONOMETRICS, 2013, 177 (02) : 285 - 288
  • [33] Estimation and inference in functional-coefficient spatial autoregressive panel data models with fixed effects
    Sun, Yiguo
    Malikov, Emir
    JOURNAL OF ECONOMETRICS, 2018, 203 (02) : 359 - 378
  • [34] On nonparametric estimation of intercept and slope distributions in random coefficient regression
    Beran, R
    Feuerverger, A
    Hall, P
    ANNALS OF STATISTICS, 1996, 24 (06): : 2569 - 2592
  • [35] Nonparametric Time-Varying Coefficient Models for Panel Data
    Lin, Huazhen
    Hong, Hyokyoung G.
    Yang, Baoying
    Liu, Wei
    Zhang, Yong
    Fan, Gang-Zhi
    Li, Yi
    STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 548 - 566
  • [36] Nonparametric Time-Varying Coefficient Models for Panel Data
    Huazhen Lin
    Hyokyoung G. Hong
    Baoying Yang
    Wei Liu
    Yong Zhang
    Gang-Zhi Fan
    Yi Li
    Statistics in Biosciences, 2019, 11 : 548 - 566
  • [37] Comparing Parameter Estimation of Random Coefficient Autoregressive Model by Frequentist Method
    Araveeporn, Autcha
    MATHEMATICS, 2020, 8 (01)
  • [38] Sequential estimation of the mean in a random coefficient autoregressive model with beta marginals
    Martinsek, AT
    STATISTICS & PROBABILITY LETTERS, 2001, 51 (01) : 53 - 61
  • [39] Semiparametric Estimation of the Modified Random Coefficient Autoregressive Model and it's Properties
    Simlai, Pradosh
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 15 (D09): : 47 - 62
  • [40] Fixed effects instrumental variables estimation in correlated random coefficient panel data models
    Murtazashvili, Irina
    Wooldridge, Jeffrey M.
    JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 539 - 552