共 50 条
Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data
被引:3
|作者:
Leipus, Remigijus
[1
,2
]
Philippe, Anne
[3
,4
]
Pilipauskaite, Vytaute
[2
,3
]
Surgailis, Donatas
[2
]
机构:
[1] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, Akad 4, LT-08663 Vilnius, Lithuania
[3] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
[4] ANJA INRIA Rennes Bretagne Atlantique, Rennes, France
关键词:
Random-coefficient autoregression;
Empirical process;
Kolmogorov-Smirnov statistic;
Goodness-of-fit testing;
Kernel density estimator;
Panel data;
LONG MEMORY;
DISAGGREGATION SCHEME;
RANDOM-VARIABLES;
AGGREGATION;
INEQUALITIES;
MODEL;
D O I:
10.1016/j.jmva.2016.09.007
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We discuss nonparametric estimation of the distribution function G(x) of the autoregressive coefficient a is an element of (-1, 1) from a panel of N random-coefficient AR(1) data, each of length n, by the empirical distribution function of lag 1 sample autocorrelations of individual AR(1) processes. Consistency and asymptotic normality of the empirical distribution function and a class of kernel density estimators is established under some regularity conditions on G(x) as N and n increase to infinity. The Kolmogorov-Smirnov goodness-of-fit test for simple and composite hypotheses of Beta distributed a is discussed. A simulation study for goodness of-fit testing compares the finite-sample performance of our nonparametric estimator to the performance of its parametric analogue discussed in Beran et al. (2010). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 135
页数:15
相关论文