Fast Multidimensional Ensemble Empirical Mode Decomposition Using a Data Compression Technique

被引:20
|
作者
Feng, Jiaxin [1 ,2 ]
Wu, Zhaohua [1 ,2 ]
Liu, Guosheng [1 ]
机构
[1] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Data processing; Data quality control; Time series; MODULATED ANNUAL CYCLE; INTERANNUAL VARIABILITY; ORTHOGONAL FUNCTIONS; SURFACE-TEMPERATURE; REFERENCE FRAME; CLIMATE NOISE; OCEAN;
D O I
10.1175/JCLI-D-13-00746.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The process of obtaining key information on climate variability and change from large climate datasets often involves large computational costs and removal of noise from the data. In this study, the authors accelerate the computation of a newly developed, multidimensional temporal-spatial analysis method, namely multidimensional ensemble empirical mode decomposition (MEEMD), for climate studies. The original MEEMD uses ensemble empirical mode decomposition (EEMD) to decompose the time series at each grid point and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated time scales, which is computationally expensive.To accelerate the algorithm, the original MEEMD is modified by 1) using principal component analysis (PCA) to transform the original temporal-spatial multidimensional climate data into principal components (PCs) and corresponding empirical orthogonal functions (EOFs); 2) retaining only a small fraction of PCs and EOFs that contain spatially and temporally coherent structures; 3) decomposing PCs into oscillatory components on naturally separated time scales; and 4) obtaining the original MEEMD components on naturally separated time scales by summing the contributions of the similar time scales from different pairs of EOFs and PCs. The study analyzes extended reconstructed sea surface temperature (ERSST) to validate the accelerated (fast) MEEMD. It is demonstrated that, for ERSST climate data, the fast MEEMD can 1) compress data with a compression rate of one to two orders and 2) increase the speed of the original MEEMD algorithm by one to two orders.
引用
收藏
页码:3492 / 3504
页数:13
相关论文
共 50 条
  • [31] PERFORMANCE EVALUATION OF ENSEMBLE EMPIRICAL MODE DECOMPOSITION
    Niazy, R. K.
    Beckmann, C. F.
    Brady, J. M.
    Smith, S. M.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (02) : 231 - 242
  • [32] ENERGY PRODUCTION TREND EXTRACTION USING ENSEMBLE EMPIRICAL MODE DECOMPOSITION
    Breaker, Laurence C.
    INTERNATIONAL JOURNAL OF ENERGY AND STATISTICS, 2013, 1 (03) : 195 - 204
  • [33] Simulation of Nonstationary Process Using Ensemble Empirical Mode Decomposition and Empirical Envelope Methods
    Yajun Zhao
    Yuanming Dou
    KSCE Journal of Civil Engineering, 2020, 24 : 3289 - 3299
  • [34] Fault Feature Extraction of Gearboxes Using Ensemble Empirical Mode Decomposition
    Lin, Jinshan
    APPLIED INFORMATICS AND COMMUNICATION, PT I, 2011, 224 : 478 - 483
  • [35] Teleconnection analysis of monthly streamflow using ensemble empirical mode decomposition
    Wang, Jia
    Wang, Xu
    Lei, Xiao Hui
    Wang, Hao
    Zhang, Xin Hua
    You, Jin Jun
    Tan, Qiao Feng
    Liu, Xiao Lian
    JOURNAL OF HYDROLOGY, 2020, 582 (582)
  • [36] Instantaneous Frequency Selective Filtering Using Ensemble Empirical Mode Decomposition
    Gupta, Rinki
    Kumar, Arun
    Bahl, Rajendar
    IETE JOURNAL OF RESEARCH, 2022, 68 (05) : 3657 - 3669
  • [37] MINING ANOMALOUS ELECTRICITY CONSUMPTION USING ENSEMBLE EMPIRICAL MODE DECOMPOSITION
    Fontugne, Romain
    Tremblay, Nicolas
    Borgnat, Pierre
    Flandrin, Patrick
    Esaki, Hiroshi
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5238 - 5242
  • [38] Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition
    Huang, Shengxiang
    Wang, Xinpeng
    Li, Chenfeng
    Kang, Chao
    MEASUREMENT, 2019, 139 : 438 - 453
  • [39] Fast Multivariate Empirical Mode Decomposition
    Lang, Xun
    Zheng, Qian
    Zhang, Zhiming
    Lu, Shan
    Xie, Lei
    Horch, Alexander
    Su, Hongye
    IEEE ACCESS, 2018, 6 : 65521 - 65538
  • [40] Succinct and fast empirical mode decomposition
    Li, Hongguang
    Hu, Yue
    Li, Fucai
    Meng, Guang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 879 - 895