Fast Multidimensional Ensemble Empirical Mode Decomposition Using a Data Compression Technique

被引:20
|
作者
Feng, Jiaxin [1 ,2 ]
Wu, Zhaohua [1 ,2 ]
Liu, Guosheng [1 ]
机构
[1] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Data processing; Data quality control; Time series; MODULATED ANNUAL CYCLE; INTERANNUAL VARIABILITY; ORTHOGONAL FUNCTIONS; SURFACE-TEMPERATURE; REFERENCE FRAME; CLIMATE NOISE; OCEAN;
D O I
10.1175/JCLI-D-13-00746.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The process of obtaining key information on climate variability and change from large climate datasets often involves large computational costs and removal of noise from the data. In this study, the authors accelerate the computation of a newly developed, multidimensional temporal-spatial analysis method, namely multidimensional ensemble empirical mode decomposition (MEEMD), for climate studies. The original MEEMD uses ensemble empirical mode decomposition (EEMD) to decompose the time series at each grid point and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated time scales, which is computationally expensive.To accelerate the algorithm, the original MEEMD is modified by 1) using principal component analysis (PCA) to transform the original temporal-spatial multidimensional climate data into principal components (PCs) and corresponding empirical orthogonal functions (EOFs); 2) retaining only a small fraction of PCs and EOFs that contain spatially and temporally coherent structures; 3) decomposing PCs into oscillatory components on naturally separated time scales; and 4) obtaining the original MEEMD components on naturally separated time scales by summing the contributions of the similar time scales from different pairs of EOFs and PCs. The study analyzes extended reconstructed sea surface temperature (ERSST) to validate the accelerated (fast) MEEMD. It is demonstrated that, for ERSST climate data, the fast MEEMD can 1) compress data with a compression rate of one to two orders and 2) increase the speed of the original MEEMD algorithm by one to two orders.
引用
收藏
页码:3492 / 3504
页数:13
相关论文
共 50 条
  • [11] A fault detection strategy using the enhancement ensemble empirical mode decomposition and random decrement technique
    Xiang, Jiawei
    Zhong, Yongteng
    MICROELECTRONICS RELIABILITY, 2017, 75 : 317 - 326
  • [12] Median ensemble empirical mode decomposition
    Lang, Xun
    Rehman, Naveed Ur
    Zhang, Yufeng
    Xie, Lei
    Su, Hongye
    SIGNAL PROCESSING, 2020, 176
  • [13] Analysis of ElectroGlottoGraph Signal using Ensemble Empirical Mode Decomposition
    Sharma, Rajib
    Ramesh, K.
    Prasanna, S. R. M.
    2014 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2014,
  • [14] Detection of ECG Beat using Ensemble Empirical Mode Decomposition
    Rezgui, Dhouha
    Lachiri, Zied
    2015 7th International Conference on Modelling, Identification and Control (ICMIC), 2014, : 309 - 314
  • [15] Filtering of surface EMG using ensemble empirical mode decomposition
    Zhang, Xu
    Zhou, Ping
    MEDICAL ENGINEERING & PHYSICS, 2013, 35 (04) : 537 - 542
  • [16] Denoising the ECG Signal Using Ensemble Empirical Mode Decomposition
    Mohguen, Wahiba
    Bouguezel, Saad
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (05) : 7536 - 7541
  • [17] Leakage Detection in Pipelines Using Ensemble Empirical Mode Decomposition
    Ghazali, M. F.
    Beck, S. B. M.
    Staszewski, W. J.
    Shucksmith, J. D.
    Boxall, J. B.
    STRUCTURAL HEALTH MONITORING 2010, 2010, : 203 - 208
  • [18] Automatic Contrast Enhancement Using Ensemble Empirical Mode Decomposition
    Lin, Shang-Ching
    Li, Pai-Chi
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (12) : 2680 - 2688
  • [19] Ensemble empirical mode decomposition of Australian monthly rainfall and temperature data
    Srikanthan, R.
    Peel, M. C.
    McMahon, T. A.
    Karoly, D. J.
    19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011), 2011, : 3643 - 3649
  • [20] Grain size characterization of aluminum based on ensemble empirical mode decomposition using a laser ultrasonic technique
    Xue, Renjie
    Wang, Xiaochen
    Yang, Quan
    Dong, Feng
    Zhang, Yanjie
    Cao, Junfeng
    Song, Guangyi
    APPLIED ACOUSTICS, 2019, 156 : 378 - 386