Direct Synthesis of van der Waals Solids

被引:236
|
作者
Lin, Yu-Chuan [1 ,2 ]
Lu, Ning [3 ]
Perea-Lopez, Nestor [2 ,4 ]
Li, Jie [5 ]
Lin, Zhong [2 ,4 ]
Peng, Xin [3 ]
Lee, Chia Hui [1 ,2 ]
Sun, Ce [3 ]
Calderin, Lazaro [1 ,2 ]
Browning, Paul N. [1 ,2 ]
Bresnehan, Michael S. [1 ,2 ]
Kim, Moon J. [3 ]
Mayer, Theresa S. [5 ]
Terrones, Mauricio [2 ,4 ]
Robinson, Joshua A. [1 ,2 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
关键词
heterostructure; chemical vapor deposition; epitaxial graphene; transition metal dichalcogenides; layered materials; two-dimensional materials; photosensor; photocurrent; photoresponsivity; HEXAGONAL BORON-NITRIDE; LARGE-AREA; EPITAXIAL GRAPHENE; THIN-FILM; MOS2; GROWTH; LAYERS; PERFORMANCE; TRANSISTORS;
D O I
10.1021/nn5003858
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The stacking of two-dimensional layered materials, such as semiconducting transition metal dichalcogenides (TMDs), insulating hexagonal boron nitride (hBN), and semimetallic graphene, has been theorized to produce tunable electronic and optoelectronic properties. Here we demonstrate the direct growth of MoS2, WSe2, and hBN on epitaxial graphene to form large-area van der Waals heterostructures. We reveal that the properties of the underlying graphene dictate properties of the heterostructures, where strain, wrinkling, and defects on the surface of graphene act as nucleation centers for lateral growth of the overlayer. Additionally, we show that the direct synthesis of TMDs on epitaxial graphene exhibits atomically sharp interfaces. Finally, we demonstrate that direct growth of MoS2 on epitaxial graphene can lead to a 103 Improvement in photoresponse compared to MoS2 alone.
引用
收藏
页码:3715 / 3723
页数:9
相关论文
共 50 条
  • [41] VAN DER WAALS CONSTANTS
    AHLBERG, R
    GOSCINSKI, O
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1974, 7 (10) : 1194 - 1203
  • [42] On a theorem of van der Waals
    Saurel, P
    JOURNAL OF PHYSICAL CHEMISTRY, 1901, 5 (02): : 137 - 140
  • [43] Van der Waals forces
    Margenau, H
    REVIEWS OF MODERN PHYSICS, 1939, 11 (01) : 0001 - 0035
  • [44] Van der Waals superlattices
    Ren, Huaying
    Wan, Zhong
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [45] Direct Exfoliation of Nanoribbons from Bulk van der Waals Crystals
    Saunders, Ashley P.
    Chen, Victoria
    Wang, Jierong
    Li, Qitong
    Johnson, Amalya C.
    McKeown-Green, Amy S.
    Zeng, Helen J.
    Mac, T. Kien
    Trinh, M. Tuan
    Heinz, Tony F.
    Pop, Eric
    Liu, Fang
    SMALL, 2024, 20 (47)
  • [46] Van der Waals Electrides
    Zhou, Jun
    You, Jing-Yang
    Zhao, Yi-Ming
    Feng, Yuan Ping
    Shen, Lei
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (17) : 2572 - 2581
  • [47] van der Waals metamaterials
    Dorrell, William
    Pirie, Harris
    Gardezi, S. Minhal
    Drucker, Nathan C.
    Hoffman, Jennifer E.
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [48] van der Waals revisited
    Baerwinkel, Klaus
    Schnack, Juergen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (18) : 4581 - 4588
  • [49] The van der Waals' formula
    Fuchs, K
    ANNALEN DER PHYSIK, 1907, 23 (07) : 385 - 391
  • [50] Recent Advances in Synthesis and Assembly of van der Waals Materials
    Dongil Chu
    Eun Kyu Kim
    Journal of the Korean Physical Society, 2018, 73 : 805 - 816