Direct Synthesis of van der Waals Solids

被引:236
|
作者
Lin, Yu-Chuan [1 ,2 ]
Lu, Ning [3 ]
Perea-Lopez, Nestor [2 ,4 ]
Li, Jie [5 ]
Lin, Zhong [2 ,4 ]
Peng, Xin [3 ]
Lee, Chia Hui [1 ,2 ]
Sun, Ce [3 ]
Calderin, Lazaro [1 ,2 ]
Browning, Paul N. [1 ,2 ]
Bresnehan, Michael S. [1 ,2 ]
Kim, Moon J. [3 ]
Mayer, Theresa S. [5 ]
Terrones, Mauricio [2 ,4 ]
Robinson, Joshua A. [1 ,2 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
关键词
heterostructure; chemical vapor deposition; epitaxial graphene; transition metal dichalcogenides; layered materials; two-dimensional materials; photosensor; photocurrent; photoresponsivity; HEXAGONAL BORON-NITRIDE; LARGE-AREA; EPITAXIAL GRAPHENE; THIN-FILM; MOS2; GROWTH; LAYERS; PERFORMANCE; TRANSISTORS;
D O I
10.1021/nn5003858
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The stacking of two-dimensional layered materials, such as semiconducting transition metal dichalcogenides (TMDs), insulating hexagonal boron nitride (hBN), and semimetallic graphene, has been theorized to produce tunable electronic and optoelectronic properties. Here we demonstrate the direct growth of MoS2, WSe2, and hBN on epitaxial graphene to form large-area van der Waals heterostructures. We reveal that the properties of the underlying graphene dictate properties of the heterostructures, where strain, wrinkling, and defects on the surface of graphene act as nucleation centers for lateral growth of the overlayer. Additionally, we show that the direct synthesis of TMDs on epitaxial graphene exhibits atomically sharp interfaces. Finally, we demonstrate that direct growth of MoS2 on epitaxial graphene can lead to a 103 Improvement in photoresponse compared to MoS2 alone.
引用
收藏
页码:3715 / 3723
页数:9
相关论文
共 50 条
  • [31] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [32] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [33] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [34] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [35] Van der Waals quintessence
    Capozziello, S
    De Martino, S
    Falanga, M
    PHYSICS LETTERS A, 2002, 299 (5-6) : 494 - 498
  • [36] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [37] Van der Waals superlattices
    Huaying Ren
    Zhong Wan
    Xiangfeng Duan
    National Science Review, 2022, 9 (05) : 14 - 16
  • [38] Van der Waals rectifiers
    Steven L. Bernasek
    Nature Nanotechnology, 2013, 8 : 80 - 81
  • [39] The van der Waals interaction
    Holstein, BR
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (04) : 441 - 449
  • [40] Van der Waals' elastica
    Mockensturm, Eric
    Mahdavi, Arash
    Proceedings of the ASME Applied Mechanics Division, 2005, 256 : 277 - 291