Direct Synthesis of van der Waals Solids

被引:236
|
作者
Lin, Yu-Chuan [1 ,2 ]
Lu, Ning [3 ]
Perea-Lopez, Nestor [2 ,4 ]
Li, Jie [5 ]
Lin, Zhong [2 ,4 ]
Peng, Xin [3 ]
Lee, Chia Hui [1 ,2 ]
Sun, Ce [3 ]
Calderin, Lazaro [1 ,2 ]
Browning, Paul N. [1 ,2 ]
Bresnehan, Michael S. [1 ,2 ]
Kim, Moon J. [3 ]
Mayer, Theresa S. [5 ]
Terrones, Mauricio [2 ,4 ]
Robinson, Joshua A. [1 ,2 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
关键词
heterostructure; chemical vapor deposition; epitaxial graphene; transition metal dichalcogenides; layered materials; two-dimensional materials; photosensor; photocurrent; photoresponsivity; HEXAGONAL BORON-NITRIDE; LARGE-AREA; EPITAXIAL GRAPHENE; THIN-FILM; MOS2; GROWTH; LAYERS; PERFORMANCE; TRANSISTORS;
D O I
10.1021/nn5003858
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The stacking of two-dimensional layered materials, such as semiconducting transition metal dichalcogenides (TMDs), insulating hexagonal boron nitride (hBN), and semimetallic graphene, has been theorized to produce tunable electronic and optoelectronic properties. Here we demonstrate the direct growth of MoS2, WSe2, and hBN on epitaxial graphene to form large-area van der Waals heterostructures. We reveal that the properties of the underlying graphene dictate properties of the heterostructures, where strain, wrinkling, and defects on the surface of graphene act as nucleation centers for lateral growth of the overlayer. Additionally, we show that the direct synthesis of TMDs on epitaxial graphene exhibits atomically sharp interfaces. Finally, we demonstrate that direct growth of MoS2 on epitaxial graphene can lead to a 103 Improvement in photoresponse compared to MoS2 alone.
引用
收藏
页码:3715 / 3723
页数:9
相关论文
共 50 条
  • [1] VAN DER WAALS FORCES IN SOLIDS
    MAHAN, GD
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (05): : 1569 - &
  • [2] VAN-DER-WAALS THEORY FOR SOLIDS
    DAANOUN, A
    TEJERO, CF
    BAUS, M
    PHYSICAL REVIEW E, 1994, 50 (04): : 2913 - 2924
  • [3] van der Waals density functional for solids
    Bjorkman, Torbjorn
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [4] Van der Waals density functionals applied to solids
    Klimes, Jiri
    Bowler, David R.
    Michaelides, Angelos
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [5] Van der Waals Solids: Properties and Device Applications
    Kaul, Anupama B.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VII, 2015, 9467
  • [6] van der Waals Interactions in Ionic and Semiconductor Solids
    Zhang, Guo-Xu
    Tkatchenko, Alexandre
    Paier, Joachim
    Appel, Heiko
    Scheffler, Matthias
    PHYSICAL REVIEW LETTERS, 2011, 107 (24)
  • [7] Fabrication of van der Waals heterostructures through direct growth of rhenium disulfide on van der Waals surfaces
    Jeon, Jaeho
    Choi, Haeju
    Baek, Sungpyo
    Choi, Seunghyuk
    Cho, Jeong Ho
    Lee, Sungjoo
    APPLIED SURFACE SCIENCE, 2021, 544
  • [8] Large piezoelectric response of van der Waals layered solids
    Manna, Sukriti
    Gorai, Prashun
    Brennecka, Geoff L.
    Ciobanu, Cristian V.
    Stevanovic, Vladan
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (41) : 11035 - 11044
  • [9] Bending-induced delamination of van der Waals solids
    Koskinen, Pekka
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (39)
  • [10] Direct measurement of retarded van der Waals attraction
    Bevan, MA
    Prieve, DC
    LANGMUIR, 1999, 15 (23) : 7925 - 7936