Nonholonomic constraints with fractional derivatives

被引:50
|
作者
Tarasov, Vasily E. [1 ]
Zaslavsky, George M.
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
来源
关键词
D O I
10.1088/0305-4470/39/31/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the fractional generalization of nonholonomic constraints defined by equations with fractional derivatives and provide some examples. The corresponding equations of motion are derived using variational principle. We prove that fractional constraints can be used to describe the evolution of dynamical systems in which some coordinates and velocities are related to velocities through a power-law memory function.
引用
收藏
页码:9797 / 9815
页数:19
相关论文
共 50 条
  • [11] Nonholonomic systems and the geometry of constraints
    Kobayashi M.H.
    Oliva W.M.
    Qualitative Theory of Dynamical Systems, 2004, 5 (2) : 247 - 259
  • [12] Fractional nonholonomic Ricci flows
    Vacaru, Sergiu I.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1266 - 1276
  • [13] Nonholonomic constraints: A new viewpoint
    Grabowski, J.
    de Leon, M.
    Marrero, J. C.
    Martin de Diego, D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [14] Nonholonomic constraints: A test case
    Gatland, IR
    AMERICAN JOURNAL OF PHYSICS, 2004, 72 (07) : 941 - 942
  • [15] On Noisy Extensions of Nonholonomic Constraints
    Gay-Balmaz, Francois
    Putkaradze, Vakhtang
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (06) : 1571 - 1613
  • [16] NONLINEAR CONSTRAINTS IN NONHOLONOMIC MECHANICS
    Popescu, Paul
    Ida, Cristian
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04): : 527 - 547
  • [17] Mechanical systems with nonholonomic constraints
    Krupkova, O
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (10) : 5098 - 5126
  • [18] ALGORITHMS FOR REACTIONS OF NONHOLONOMIC CONSTRAINTS AND SERVO-CONSTRAINTS
    SLAWIANOWSKI, JJ
    ARCHIVES OF MECHANICS, 1987, 39 (06): : 615 - 662
  • [19] Nonholonomic constraints in classical field theories
    Binz, E
    de León, M
    de Diego, DM
    Socolescu, D
    REPORTS ON MATHEMATICAL PHYSICS, 2002, 49 (2-3) : 151 - 166
  • [20] OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS
    Agrachev, Andrei
    Lee, Paul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) : 6019 - 6047