Clustering-Based Discriminant Analysis for Eye Detection

被引:13
|
作者
Chen, Shuo [1 ]
Liu, Chengjun [1 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
关键词
Discriminant analysis; k-means clustering; feature extraction; eye detection; Haar wavelets; FACE-RECOGNITION; FEATURES METHOD; PRECISE EYE; FRAMEWORK; COLOR; LDA;
D O I
10.1109/TIP.2013.2294548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes three clustering-based discriminant analysis (CDA) models to address the problem that the Fisher linear discriminant may not be able to extract adequate features for satisfactory performance, especially for two class problems. The first CDA model, CDA-1, divides each class into a number of clusters by means of the k-means clustering technique. In this way, a new within-cluster scatter matrix S-w(c) and a new between-cluster scatter matrix S-b(c) are defined. The second and the third CDA models, CDA-2 and CDA-3, define a nonparametric form of the between-cluster scatter matrices N - S-b(c). The nonparametric nature of the between-cluster scatter matrices inherently leads to the derived features that preserve the structure important for classification. The difference between CDA-2 and CDA-3 is that the former computes the between-cluster matrix N-S-b(c) on a local basis, whereas the latter computes the between-cluster matrix N-S-b(c) on a global basis. This paper then presents an accurate CDA-based eye detection method. Experiments on three widely used face databases show the feasibility of the proposed three CDA models and the improved eye detection performance over some state-of-the-art methods.
引用
收藏
页码:1629 / 1638
页数:10
相关论文
共 50 条
  • [41] CLUSTERING-BASED BEHAVIOURAL ANALYSIS OF BIOLOGICAL OBJECTS
    Kirshners, Arnis
    ENVIRONMENT, TECHNOLOGY, RESOURCES, PROCEEDINGS OF THE 8TH INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE, 2011, VOL II, 2011, : 24 - 32
  • [42] Multiclass Spectral Clustering Based on Discriminant Analysis
    Li, Xi
    Zhang, Zhongfei
    Wang, Yanguo
    Hu, Weiming
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 18 - +
  • [43] CID: a novel clustering-based database intrusion detection algorithm
    Keyvanpour, Mohamad Reza
    Barani Shirzad, Mehrnoush
    Mehmandoost, Samaneh
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (02) : 1601 - 1612
  • [44] Entropy clustering-based granular classifiers for network intrusion detection
    Hui Liu
    Gang Hao
    Bin Xing
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [45] Spectral clustering-based network community detection with node attributes
    Tang, Fengqin
    Wang, Yuanyuan
    Su, Jinxia
    Wang, Chunning
    STATISTICS AND ITS INTERFACE, 2019, 12 (01) : 123 - 133
  • [46] Hybrid clustering-based bad data detection of PMU measurements
    Zhu, Yanming
    Xu, Xiaoyuan
    Yan, Zheng
    Energy Conversion and Economics, 2021, 2 (04): : 235 - 247
  • [47] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    APPLIED SOFT COMPUTING, 2021, 100
  • [48] Time series anomaly detection via clustering-based representation
    Enayati, Elham
    Mortazavi, Reza
    Basiri, Abdolali
    Ghasemian, Javad
    Moallem, Mahmoud
    EVOLVING SYSTEMS, 2024, 15 (04) : 1115 - 1136
  • [49] Trajectory Clustering-Based Anomaly Detection in Indoor Human Movement
    Lan, Doi Thi
    Yoon, Seokhoon
    SENSORS, 2023, 23 (06)
  • [50] Deep Convolutional Clustering-Based Time Series Anomaly Detection
    Chadha, Gavneet Singh
    Islam, Intekhab
    Schwung, Andreas
    Ding, Steven X.
    SENSORS, 2021, 21 (16)