Clustering-Based Discriminant Analysis for Eye Detection

被引:13
|
作者
Chen, Shuo [1 ]
Liu, Chengjun [1 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
关键词
Discriminant analysis; k-means clustering; feature extraction; eye detection; Haar wavelets; FACE-RECOGNITION; FEATURES METHOD; PRECISE EYE; FRAMEWORK; COLOR; LDA;
D O I
10.1109/TIP.2013.2294548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes three clustering-based discriminant analysis (CDA) models to address the problem that the Fisher linear discriminant may not be able to extract adequate features for satisfactory performance, especially for two class problems. The first CDA model, CDA-1, divides each class into a number of clusters by means of the k-means clustering technique. In this way, a new within-cluster scatter matrix S-w(c) and a new between-cluster scatter matrix S-b(c) are defined. The second and the third CDA models, CDA-2 and CDA-3, define a nonparametric form of the between-cluster scatter matrices N - S-b(c). The nonparametric nature of the between-cluster scatter matrices inherently leads to the derived features that preserve the structure important for classification. The difference between CDA-2 and CDA-3 is that the former computes the between-cluster matrix N-S-b(c) on a local basis, whereas the latter computes the between-cluster matrix N-S-b(c) on a global basis. This paper then presents an accurate CDA-based eye detection method. Experiments on three widely used face databases show the feasibility of the proposed three CDA models and the improved eye detection performance over some state-of-the-art methods.
引用
收藏
页码:1629 / 1638
页数:10
相关论文
共 50 条
  • [21] Clustering-Based Network Intrusion Detection System
    Fan, Chun-I
    Lai, Yen-Lin
    Shie, Cheng-Han
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,
  • [22] Data clustering-based fault detection in WSNs
    Yang, Yang
    Liu, Qian
    Gao, Zhipeng
    Qiu, Xuesong
    Rui, Lanlan
    2015 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2015, : 334 - 339
  • [23] Design and Analysis of Clustering-Based Joint Channel Estimation and Signal Detection for NOMA
    Salari, Ayoob
    Shirvanimoghaddam, Mahyar
    Shahab, Muhammad Basit
    Arablouei, Reza
    Johnson, Sarah
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 2093 - 2108
  • [24] Clustering-Based Detection of Debye-Scherrer Rings
    Sirhindi, Rabia
    Khan, Nazar
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (04)
  • [26] Clustering-based attack detection for adversarial reinforcement learning
    Rubén Majadas
    Javier García
    Fernando Fernández
    Applied Intelligence, 2024, 54 : 2631 - 2647
  • [27] Clustering-Based Recommendation System for Preliminary Disease Detection
    Jain, Gourav
    Mahara, Tripti
    Sharma, S. C.
    Verma, Om Prakash
    Sharma, Tarun
    INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS, 2022, 13 (04)
  • [28] An improved unsupervised clustering-based intrusion detection method
    Hai, YJ
    Wu, Y
    Wang, GY
    Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, 2005, 5812 : 52 - 60
  • [29] A Mixed Unsupervised Clustering-based Intrusion Detection Model
    Zhang, Cuixiao
    Zhang, Guobing
    Sun, Shanshan
    THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 426 - 428
  • [30] Clustering-based Novelty Detection to Uncover Electricity Theft
    Viegas, Joaquim L.
    Vieira, Susana M.
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,