A geometric invariant for metabelian pro-p groups

被引:8
|
作者
King, JD [1 ]
机构
[1] Tonbridge Sch, Tonbridge TN9 1JP, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S0024610799007693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [31] Pro-p link groups and p-homology groups
    Hillman, Jonathan
    Matei, Daniel
    Morishita, Masanori
    PRIMES AND KNOTS, 2006, 416 : 121 - 136
  • [32] Rigid Metabelian Pro-p-Groups
    Afanas'eva, S. G.
    Romanovskii, N. S.
    ALGEBRA AND LOGIC, 2014, 53 (02) : 102 - 113
  • [33] VARIETIES OF METABELIAN PRO-P-GROUPS
    ZUBKOV, AN
    SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (05) : 816 - 825
  • [34] p-Johnson homomorphisms and pro-p groups
    Morishita, Masanori
    Terashima, Yuji
    JOURNAL OF ALGEBRA, 2017, 479 : 102 - 136
  • [35] p-extensions of free pro-p groups
    Herfort, WN
    Ribes, L
    Zalesskii, PA
    FORUM MATHEMATICUM, 1999, 11 (01) : 49 - 61
  • [36] Rigid Metabelian Pro-p-Groups
    S. G. Afanas’eva
    N. S. Romanovskii
    Algebra and Logic, 2014, 53 : 102 - 113
  • [37] Locally pro-p contraction groups are nilpotent
    Gloeckner, Helge
    Willis, George A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 85 - 103
  • [38] On small waist pairs in pro-p groups
    Gavioli, Norberto
    Legarreta, Leire
    Ruscitti, Marco
    Scoppola, Carlo Maria
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 263 - 272
  • [39] Homological finiteness conditions for pro-p groups
    King, JD
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4969 - 4991
  • [40] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254