On small waist pairs in pro-p groups

被引:0
|
作者
Gavioli, Norberto [1 ]
Legarreta, Leire [2 ]
Ruscitti, Marco [1 ]
Scoppola, Carlo Maria [1 ]
机构
[1] Univ Aquila, I-67100 Laquila, Italy
[2] Euskal Herriko Unibensitatea, UPV EHU, Matemat Saila, Bilbao 48080, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 189卷 / 02期
关键词
Pro-p groups; Open (closed) normal subgroups; Waists;
D O I
10.1007/s00605-018-1213-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyze a list of general properties of waists and waist pairs in a pro-p group, these being subgroups or pairs of subgroups comparable in some sense with respect to inclusion with any open normal subgroup of the pro-p group. In the case of waist pairs of a pro-p group we get some characterizations of them, and give a way of building new waist pairs.
引用
收藏
页码:263 / 272
页数:10
相关论文
共 50 条
  • [1] On small waist pairs in pro-p groups
    Norberto Gavioli
    Leire Legarreta
    Marco Ruscitti
    Carlo Maria Scoppola
    Monatshefte für Mathematik, 2019, 189 : 263 - 272
  • [2] Small maximal pro-p Galois groups
    Efrat, I
    MANUSCRIPTA MATHEMATICA, 1998, 95 (02) : 237 - 249
  • [3] Small maximal pro-p Galois groups
    Ido Efrat
    manuscripta mathematica, 1998, 95 (1) : 237 - 249
  • [4] Analytic pro-p groups of small dimensions
    Gonzalez-Sanchez, Jon
    Klopsch, Benjamin
    JOURNAL OF GROUP THEORY, 2009, 12 (05) : 711 - 734
  • [5] Small maximal pro-p Galois groups
    Efrat I.
    manuscripta mathematica, 1998, 95 (2) : 237 - 249
  • [6] Splitting theorems for pro-p groups acting on pro-p trees
    Wolfgang Herfort
    Pavel Zalesskii
    Theo Zapata
    Selecta Mathematica, 2016, 22 : 1245 - 1268
  • [7] Splitting theorems for pro-p groups acting on pro-p trees
    Herfort, Wolfgang
    Zalesskii, Pavel
    Zapata, Theo
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1245 - 1268
  • [8] Pro-p groups with waists
    Gavioli, Norberto
    Monti, Valerio
    Scoppola, Carlo Maria
    JOURNAL OF ALGEBRA, 2012, 351 (01) : 130 - 137
  • [9] 1-SMOOTH PRO-p GROUPS AND BLOCH-KATO PRO-p GROUPS
    Quadrelli, Claudio
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 53 - 67
  • [10] On accessibility for pro-p groups
    Wilkes, Gareth
    JOURNAL OF ALGEBRA, 2019, 525 : 1 - 18