Representations of Archimedean t-norms in interval-valued fuzzy set theory

被引:0
|
作者
Deschrijver, Glad [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, Fuzziness & Uncertainty Modeling Res Unit, B-9000 Ghent, Belgium
关键词
interval-valued fuzzy set; intuitionistic fuzzy set; t-norm; Archimedean; nilpotent; strict; representation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the Archimedean property and the nilpotency of t-norms on the lattice L(1) is investigated, where L(1) is the underlying lattice of interval-valued fuzzy set theory (Sambuc, 1975) and intuitionistic fuzzy set theory (Atanassov, 1983). We give some characterizations of continuous t-norms on L(1) which satisfy the residuation principle, T(D, D) subset of D, the Archimedean property and nilpotency.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [41] On Interval-Valued Fuzzy Soft Set Theory Applied To Ternary Semigroups
    P. Yiarayong
    Lobachevskii Journal of Mathematics, 2021, 42 : 222 - 230
  • [43] Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory
    Asiain, Maria J.
    Bustince, Humberto
    Mesiar, Radko
    Kolesarova, Anna
    Takac, Zdenko
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (02) : 556 - 568
  • [44] Generalised Interval-Valued Fuzzy Soft Set
    Alkhazaleh, Shawkat
    Salleh, Abdul Razak
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [45] Representation theorem of interval-valued fuzzy set
    Zeng, Wenyi
    Shi, Yu
    Li, Hongxing
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2006, 14 (03) : 259 - 269
  • [46] Extension principle of interval-valued fuzzy set
    Zeng, Wenyi
    Zhao, Yibin
    Li, Hongxing
    FUZZY INFORMATION AND ENGINEERING, PROCEEDINGS, 2007, 40 : 125 - +
  • [47] Interval-Valued fuzzy hypergraph and Interval-Valued fuzzy hyperoperations
    Feng, Yuming
    Tu, Dan
    Li, Hongyi
    Italian Journal of Pure and Applied Mathematics, 2016, 36 : 1 - 12
  • [48] INTERVAL-VALUED FUZZY HYPERGRAPH AND INTERVAL-VALUED FUZZY HYPEROPERATIONS
    Feng, Yuming
    Tu, Dan
    Li, Hongyi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 1 - 12
  • [49] Interval-valued T-fuzzy filters and interval-valued T-fuzzy congruences on residuated lattices
    Liu, Yi
    Xu, Yang
    Qin, Xiaoyan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (04) : 2021 - 2033
  • [50] Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application
    Cornelis, C
    Deschrijver, G
    Kerre, EE
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2004, 35 (01) : 55 - 95