Representations of Archimedean t-norms in interval-valued fuzzy set theory

被引:0
|
作者
Deschrijver, Glad [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, Fuzziness & Uncertainty Modeling Res Unit, B-9000 Ghent, Belgium
关键词
interval-valued fuzzy set; intuitionistic fuzzy set; t-norm; Archimedean; nilpotent; strict; representation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the Archimedean property and the nilpotency of t-norms on the lattice L(1) is investigated, where L(1) is the underlying lattice of interval-valued fuzzy set theory (Sambuc, 1975) and intuitionistic fuzzy set theory (Atanassov, 1983). We give some characterizations of continuous t-norms on L(1) which satisfy the residuation principle, T(D, D) subset of D, the Archimedean property and nilpotency.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [21] Fuzzy rough set theory for the interval-valued fuzzy information systems
    Sun, Bingzhen
    Gong, Zengtai
    Chen, Degang
    INFORMATION SCIENCES, 2008, 178 (13) : 2794 - 2815
  • [22] Note on interval-valued fuzzy set
    Zeng, WY
    Shi, Y
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 1, PROCEEDINGS, 2005, 3613 : 20 - 25
  • [23] The best interval representations of t-norms and automorphisms
    Callejas Bedregal, Benjamin Rene
    Takahashi, Adriana
    FUZZY SETS AND SYSTEMS, 2006, 157 (24) : 3220 - 3230
  • [24] Generalized arithmetic operations in interval-valued fuzzy set theory
    Deschrijver, G
    Vroman, A
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2005, 16 (04) : 265 - 271
  • [25] Rough set theory for the interval-valued fuzzy information systems
    Gong, Zengtai
    Sun, Bingzhen
    Chen, Degang
    INFORMATION SCIENCES, 2008, 178 (08) : 1968 - 1985
  • [26] Multiple Products and Implications in Interval-Valued Fuzzy Set Theory
    Deschrijver, Glad
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 412 - 419
  • [27] On interval-valued fuzzy soft set theory applied to semigroups
    Yiarayong, Pairote
    SOFT COMPUTING, 2020, 24 (05) : 3113 - 3123
  • [28] On interval-valued fuzzy soft set theory applied to semigroups
    Pairote Yiarayong
    Soft Computing, 2020, 24 : 3113 - 3123
  • [29] Additive and multiplicative generators in interval-valued fuzzy set theory
    Deschrijver, Glad
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (02) : 222 - 237
  • [30] New Operations on Interval-Valued Picture Fuzzy Set, Interval-Valued Picture Fuzzy Soft Set and Their Applications
    Khalil, Ahmed Mostafa
    Li, Sheng-Gang
    Garg, Harish
    Li, Hongxia
    Ma, Shengquan
    IEEE ACCESS, 2019, 7 : 51236 - 51253