Derivative formula and exponential convergence for semilinear SPDEs driven by Levy processes

被引:0
|
作者
Song, Yulin [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Levy processes; SPDEs; Bismut-Elworthy-Li formula; Total variation norm; Exponential convergence; DIFFERENTIAL-EQUATION DRIVEN; TIME REGULARITY; HEAT-EQUATION; ERGODICITY; EXISTENCE;
D O I
10.1016/j.spl.2014.03.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using Galerkin's approximation, we establish a Bismut-Elworthy-Li type derivative formula for semilinear SPDEs driven by Levy processes with a-finite Levy measure. Meanwhile, we also investigate the continuity under total variation norm and exponential convergence of the transition function P-t (x, .). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 50 条
  • [31] On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Levy processes
    Mikulevicius, Remigijus
    Zhang, Changyong
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (08) : 1720 - 1748
  • [32] Exponential Functionals of Levy Processes with Jumps
    Behme, Anita
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (01): : 375 - 397
  • [33] On the density of exponential functionals of Levy processes
    Pardo, J. C.
    Rivero, V.
    Van Schaik, K.
    BERNOULLI, 2013, 19 (5A) : 1938 - 1964
  • [34] AN OPTIMAL ITO FORMULA FOR LEVY PROCESSES
    Eisenbaum, Nathalie
    Walsh, Alexander
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 202 - 209
  • [35] Tanaka Formula for Symmetric Levy Processes
    Salminen, Paavo
    Yor, Marc
    SEMINAIRE DE PROBABILITES XL, 2007, 1899 : 265 - 285
  • [36] POISSON S2-ALMOST AUTOMORPHY FOR STOCHASTIC PROCESSES AND ITS APPLICATIONS TO SPDES DRIVEN BY LEVY NOISE
    Li, Xueqin
    Tang, Chao
    Huang, Tianmin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 3309 - 3345
  • [37] GLOBAL ATTRACTING SET, EXPONENTIAL DECAY AND STABILITY IN DISTRIBUTION OF NEUTRAL SPDES DRIVEN BY ADDITIVE α-STABLE PROCESSES
    Liu, Kai
    Li, Zhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3551 - 3573
  • [38] An anticipating Ito formula for Levy processes
    Alos, Elisa
    Leon, Jorge A.
    Vives, Josep
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 4 : 285 - 305
  • [39] Existence and Uniqueness for a Class of SPDEs Driven by Levy Noise in Hilbert Spaces
    Zamani, Majid
    Vaezpour, S. Mansour
    Salavati, Erfan
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (03): : 51 - 68
  • [40] Convergence of Rescaled Competing Species Processes to a Class of SPDEs
    Kliem, Sandra
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 618 - 657