Levy processes;
SPDEs;
Bismut-Elworthy-Li formula;
Total variation norm;
Exponential convergence;
DIFFERENTIAL-EQUATION DRIVEN;
TIME REGULARITY;
HEAT-EQUATION;
ERGODICITY;
EXISTENCE;
D O I:
10.1016/j.spl.2014.03.002
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
By using Galerkin's approximation, we establish a Bismut-Elworthy-Li type derivative formula for semilinear SPDEs driven by Levy processes with a-finite Levy measure. Meanwhile, we also investigate the continuity under total variation norm and exponential convergence of the transition function P-t (x, .). (C) 2014 Elsevier B.V. All rights reserved.
机构:
Le Mans Univ, Lab Manceau Math, LMM, Le Mans, France
Le Mans Univ, FR CNRS 2962, Inst Risque & Assurance, Le Mans, FranceLe Mans Univ, Lab Manceau Math, LMM, Le Mans, France
Matoussi, Anis
Mrad, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sorbonne Paris Nord, LAGA, UMR CNRS 7539, Lab Anal Geometrie & Applicat, Villetaneuse, FranceLe Mans Univ, Lab Manceau Math, LMM, Le Mans, France