Evidence for entangled states of two coupled flux qubits

被引:147
|
作者
Izmalkov, A
Grajcar, M
Il'ichev, E
Wagner, T
Meyer, HG
Smirnov, AY
Amin, MHS
van den Brink, AM
Zagoskin, AM
机构
[1] Inst Phys High Technol, D-07702 Jena, Germany
[2] Moscow MV Lomonosov State Univ, Moscow Engn Phys Inst, Moscow, Russia
[3] Comenius Univ, Dept Solid State Phys, SK-84248 Bratislava, Slovakia
[4] D Wave Inc, Vancouver, BC, Canada
[5] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
关键词
D O I
10.1103/PhysRevLett.93.037003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits using the impedance measurement technique (IMT), through their influence on the resonant properties of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank's current-voltage phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for entanglement). The dependence on temperature and relative bias between the qubits allows one to determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms the formation of entangled eigenstates.
引用
收藏
页码:037003 / 1
页数:4
相关论文
共 50 条
  • [31] Generating stationary entangled states in superconducting qubits
    Zhang, Jing
    Liu, Yu-xi
    Li, Chun-Wen
    Tarn, Tzyh-Jong
    Nori, Franco
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [32] Producing cluster states in charge qubits and flux qubits
    Tanamoto, Tetsufumi
    Liu, Yu-xi
    Fujita, Shinobu
    Hu, Xuedong
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2006, 97 (23)
  • [33] Cotunneling in pairs of coupled flux qubits
    Lanting, T.
    Harris, R.
    Johansson, J.
    Amin, M. H. S.
    Berkley, A. J.
    Gildert, S.
    Johnson, M. W.
    Bunyk, P.
    Tolkacheva, E.
    Ladizinsky, E.
    Ladizinsky, N.
    Oh, T.
    Perminov, I.
    Chapple, E. M.
    Enderud, C.
    Rich, C.
    Wilson, B.
    Thom, M. C.
    Uchaikin, S.
    Rose, G.
    PHYSICAL REVIEW B, 2010, 82 (06):
  • [34] Parametric amplification by coupled flux qubits
    Rehak, M.
    Neilinger, P.
    Grajcar, M.
    Oelsner, G.
    Huebner, U.
    Il'ichev, E.
    Meyer, H. -G.
    APPLIED PHYSICS LETTERS, 2014, 104 (16)
  • [35] Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit
    Maleki, Yusef
    Zheltikov, Aleksei M.
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [36] Controllable and accelerated generation of entangled states between two superconducting qubits in circuit QED
    Yan, Run-Ying
    Feng, Zhi-Bo
    OPTICS AND LASER TECHNOLOGY, 2021, 135
  • [37] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Tong Liu
    Bao-Qing Guo
    Yan-Hui Zhou
    Jun-Long Zhao
    Yu-Liang Fang
    Qi-Cheng Wu
    Chui-Ping Yang
    Frontiers of Physics, 2022, 17
  • [38] Teleportation of the entangled state of two superconducting qubits
    Salimian, S.
    Tavassoly, M. K.
    Sehati, N.
    EPL, 2022, 138 (05)
  • [39] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Liu, Tong
    Guo, Bao-Qing
    Zhou, Yan-Hui
    Zhao, Jun-Long
    Fang, Yu-Liang
    Wu, Qi-Cheng
    Yang, Chui-Ping
    FRONTIERS OF PHYSICS, 2022, 17 (06)
  • [40] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Liu Tong
    Guo BaoQing
    Zhou YanHui
    Zhao JunLong
    Fang YuLiang
    Wu QiCheng
    Yang ChuiPing
    Frontiers of Physics, 2022, 17 (06)