Generating stationary entangled states in superconducting qubits

被引:30
|
作者
Zhang, Jing [1 ,2 ]
Liu, Yu-xi [1 ,3 ]
Li, Chun-Wen [2 ]
Tarn, Tzyh-Jong [4 ]
Nori, Franco [1 ,3 ,5 ]
机构
[1] RIKEN, Inst Phys & Chem Res, Adv Sci Inst, Wako, Saitama 3510198, Japan
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Japan Sci & Technol Agcy JST, CREST, Kawaguchi, Saitama 3320012, Japan
[4] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[5] Univ Michigan, Dept Phys, Ctr Theoret Phys, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
quantum computing; quantum entanglement; superconducting devices; PHONON SQUEEZED STATES; FLUX QUBIT; QUANTUM; DECOHERENCE; SUPPRESSION; DYNAMICS;
D O I
10.1103/PhysRevA.79.052308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F-max between the stationary entangled state, rho(infinity), and the maximally entangled state, rho(m), can be about 2/3 approximate to max{tr(rho(infinity)rho(m))}=F-max, corresponding to a maximum stationary concurrence, C-max, of about 1/3 approximate to C(rho(infinity))=C-max. This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Macroscopic Entangled States in Superconducting Flux Qubits
    Kim, Mun Dae
    Cho, Sam Young
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 2, 2009, 150
  • [2] Entangled macroscopic quantum states in two superconducting qubits
    Berkley, AJ
    Xu, H
    Ramos, RC
    Gubrud, MA
    Strauch, FW
    Johnson, PR
    Anderson, JR
    Dragt, AJ
    Lobb, CJ
    Wellstood, FC
    SCIENCE, 2003, 300 (5625) : 1548 - 1550
  • [3] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Tong Liu
    Bao-Qing Guo
    Yan-Hui Zhou
    Jun-Long Zhao
    Yu-Liang Fang
    Qi-Cheng Wu
    Chui-Ping Yang
    Frontiers of Physics, 2022, 17
  • [4] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Liu Tong
    Guo BaoQing
    Zhou YanHui
    Zhao JunLong
    Fang YuLiang
    Wu QiCheng
    Yang ChuiPing
    Frontiers of Physics, 2022, 17 (06)
  • [5] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Liu, Tong
    Guo, Bao-Qing
    Zhou, Yan-Hui
    Zhao, Jun-Long
    Fang, Yu-Liang
    Wu, Qi-Cheng
    Yang, Chui-Ping
    FRONTIERS OF PHYSICS, 2022, 17 (06)
  • [6] Generating multipartite entangled states of qubits distributed in different cavities
    Xiao-Ling He
    Qi-Ping Su
    Feng-Yang Zhang
    Chui-Ping Yang
    Quantum Information Processing, 2014, 13 : 1381 - 1395
  • [7] Generating multipartite entangled states of qubits distributed in different cavities
    He, Xiao-Ling
    Su, Qi-Ping
    Zhang, Feng-Yang
    Yang, Chui-Ping
    QUANTUM INFORMATION PROCESSING, 2014, 13 (06) : 1381 - 1395
  • [8] Generation of macroscopic entangled states in coupled superconducting phase qubits
    Matsuo, Shigemasa
    Ashhab, Sahel
    Fujii, Toshiyuki
    Nori, Franco
    Nagai, Katsuhiko
    Hatakenaka, Noriyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (05)
  • [9] Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits
    Xu, Kai
    Zhang, Yu-Ran
    Sun, Zheng-Hang
    Li, Hekang
    Song, Pengtao
    Xiang, Zhongcheng
    Huang, Kaixuan
    Li, Hao
    Shi, Yun-Hao
    Chen, Chi-Tong
    Song, Xiaohui
    Zheng, Dongning
    Nori, Franco
    Wang, H.
    Fan, Heng
    PHYSICAL REVIEW LETTERS, 2022, 128 (15)
  • [10] Generation of three-qubit entangled states using superconducting phase qubits
    Matthew Neeley
    Radoslaw C. Bialczak
    M. Lenander
    E. Lucero
    Matteo Mariantoni
    A. D. O’Connell
    D. Sank
    H. Wang
    M. Weides
    J. Wenner
    Y. Yin
    T. Yamamoto
    A. N. Cleland
    John M. Martinis
    Nature, 2010, 467 : 570 - 573