Stochastic PDE's of Schrodinger type and stochastic Mehler kernels - a path integral approach

被引:0
|
作者
Truman, A [1 ]
Zastawniak, T [1 ]
机构
[1] Univ Wales, Dept Math, Swansea SA2 8PP, W Glam, Wales
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a rigorous path integral derivation of stochastic Mehler kernel formulae with applications to stochastic partial differential equations used in the theory of quantum measurement and filtering.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 50 条
  • [21] Path Integral Methods for Stochastic Differential Equations
    Chow, Carson C.
    Buice, Michael A.
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2015, 5
  • [22] Path-integral approach to the Schrodinger current
    Marchewka, A
    Schuss, Z
    PHYSICAL REVIEW A, 2000, 61 (05): : 10
  • [23] Stochastic path-integral approach for predicting the superconducting temperatures of anharmonic solids
    Chen, Haoran
    Shi, Junren
    PHYSICAL REVIEW B, 2022, 106 (18)
  • [24] Path-integral approach to a semiclassical stochastic description of quantum dissipative systems
    Casado-Pascual, J
    Denk, C
    Morillo, M
    Cukier, RI
    CHEMICAL PHYSICS, 2001, 268 (1-3) : 165 - 176
  • [25] A path integral approach to option pricing with stochastic volatility: Some exact results
    Baaquie, BE
    JOURNAL DE PHYSIQUE I, 1997, 7 (12): : 1733 - 1753
  • [26] Constrained stochastic optimal control with learned importance sampling: A path integral approach
    Carius, Jan
    Ranftl, Rene
    Farshidian, Farbod
    Hutter, Marco
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2022, 41 (02): : 189 - 209
  • [27] An iterative path integral stochastic optimal control approach for learning robotic tasks
    Computational Learning and Motor Control Lab., University of Southern California, United States
    不详
    不详
    IFAC Proc. Vol. (IFAC-PapersOnline), 1 PART 1 (11594-11601):
  • [28] STOCHASTIC INTEGRAL EQUATION OF FREDHOLM TYPE
    PADGETT, WJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 231 - &
  • [29] Stochastic crack inversion by an integral approach
    Zaoui, F
    Marchand, C
    Pávó, J
    ELECTROMAGNETIC NONDESTRUCTIVE EVALUATION (V), 2001, 21 : 129 - 136
  • [30] Optimized stochastic approach for integral equations
    Todorov, Venelin
    Fidanova, Stefka
    Dimov, Ivan
    Georgieva, Rayna
    PROCEEDINGS OF THE 2021 16TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2021, : 239 - 242