Average performance of the approximation in a dictionary using an l0 objective

被引:0
|
作者
Malgouyres, Francois [1 ]
Nikolova, Mila [2 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
[2] PRES UnivSud, CNRS, ENS Cachan, CMLA, F-94230 Cachan, France
关键词
NOISE;
D O I
10.1016/j.crma.2009.02.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the minimization of the number of non-zero coefficients (the eo "norm") of the representation of a data set in a general dictionary under a fidelity constraint. This (nonconvex) optimization problem leads to the sparsest approximation. The average performance of the model consists in the probability (on the data) to obtain a K-sparse solution-involving at most K nonzero components-from data uniformly distributed on a domain. These probabilities are expressed in terms of the parameters of the model and the accuracy of the approximation. We comment the obtained formulas and give a simulation. To cite this article: F Malgouyres, M. Nikolova, C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:565 / 570
页数:6
相关论文
共 50 条
  • [41] Gravity inversion using L0 norm for sparse constraints
    Zhu, Dan
    Hu, Xiangyun
    Liu, Shuang
    Cai, Hongzhu
    Xu, Shan
    Meng, Linghui
    Zhang, Henglei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 236 (02) : 904 - 923
  • [42] LOW MUTUAL AND AVERAGE COHERENCE DICTIONARY LEARNING USING CONVEX APPROXIMATION
    Parsa, Javad
    Sadeghi, Mostafa
    Babaie-Zadeh, Massoud
    Jutten, Christian
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3417 - 3421
  • [43] L0 SPARSE GRAPHICAL MODELING
    Marjanovic, Goran
    Solo, Victor
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2084 - 2087
  • [44] Lacunary convergence of series in L0
    Drewnowski, L
    Labuda, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) : 1655 - 1659
  • [45] Learning Deep l0 Encoders
    Wang, Zhangyang
    Ling, Qing
    Huang, Thomas S.
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2194 - 2200
  • [46] Sparse regularization with the l0 norm
    Xu, Yuesheng
    ANALYSIS AND APPLICATIONS, 2023, 21 (04) : 901 - 929
  • [47] ADMM for l0 Factor Analysis
    Wang, Linyang
    Liu, Wanquan
    Zhu, Bin
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [48] Fuzzy clustering with L0 regularization
    Ferraro, Maria Brigida
    Forti, Marco
    Giordani, Paolo
    ANNALS OF OPERATIONS RESEARCH, 2025,
  • [49] Nonlinear centralizers with values in L0
    Cabello Sanchez, Felix
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 88 : 42 - 50
  • [50] Interpolation between L0(M, τ) and L∞(M, τ)
    Huang, J.
    Sukochev, F.
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1657 - 1672